精英家教网 > 高中数学 > 题目详情
12.若变量x,y满足$\left\{\begin{array}{l}x-4y+3≤0\\ 3x+5y-25≤0\\ x≥1\end{array}\right.$,实数$\frac{z}{2}$是2x和y的等差中项,则z的最大值为(  )
A.3B.6C.12D.15

分析 作出不等式组对应的平面区域,利用等差中项,求出z的表达式,利用数形结合即可得到结论

解答 解:∵$\frac{z}{2}$是2x和y的等差中项,
∴2x+y=z,即y=-2x-z,
作出不等式组对应的平面区域如图:
平移直线y=-2x-z,由图象可知当直线经过点A时,此时z最大.
即A(5,2),
此时z=12,
故选:C

点评 本题主要考查线性规划的应用,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若变量x,y满足条件$\left\{\begin{array}{l}3x-y≤0\\ x-3y+5≥0\\ x≥0\end{array}\right.$则z=x+y的最大值为(  )
A.0B.$\frac{5}{3}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.给出下列三个命题:
①若命题p:2是实数,命题q:2是奇数,则p或q为真命题;
②记函数f(x)是导函数为f′(x),若f′(x0)=0,则f(x0)是f(x)的极值;
③“a=3”是“直线l1::x+ay-3=0,l2:(a-1)x+2ay+1=0平行“的充要条件.
则真命题的序号是①.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某高中共有2000名学生,其中各年级男生、女生的人数如表所示,已知在全校学生中随机抽取1人,抽到高二年级女生的概率是0.19,现用分层抽样的方法在全校抽取64名学生,则在高三年级中应抽取的学生人数是(  )
高一高二高三
女生373mn
男生377370p
A.8B.16C.28D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于(  )
A.7B.3C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若抛物线y2=8x的准线被圆心为抛物线的焦点的圆截得的弦长为6,则该圆的标准方程为(x-2)2+y2=25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知正实数x,y满足$\frac{2}{x}+\frac{1}{y}=1$,若x+2y>m2+2m恒成立,则实数m的取值范围是(  )
A.(-2,4)B.(-4,2)C.(-∞,2]∪[4,+∞)D.(-∞,-4]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C的对边分别为a,b,c,且2csinC=(2b+a)sinB+(2a-3b)sinA.
(1)求角C的大小;
(2)若c=4,求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.实数x,y满足$\left\{\begin{array}{l}{x+1≥0}\\{x-y+1≥0}\\{x+y-2≤0}\end{array}\right.$,则y-4x的取值范围是(  )
A.(-∞,4]B.(-∞,7]C.[-$\frac{1}{2}$,4]D.[-$\frac{1}{2}$,7]

查看答案和解析>>

同步练习册答案