分析 (1)对q分类讨论,利用等比数列的前n项和公式可得Sn;
(2)利用数列极限法则即可得出.
解答 $\begin{array}{l}解:(1)当q=1,{S_n}=2n;\\ 当q>0且q≠1,{S_n}=\frac{{2(1-{q^n})}}{1-q}\\∴{S_n}=\left\{{\begin{array}{l}{2n,q=1}\\{\frac{{2(1-{q^n})}}{1-q},q>0且q≠1}\end{array}}\right.\end{array}$
(2)①当q=1时,Sn=2n,Tn=2n,$\lim_{n→∞}\frac{S_n}{T_n}$=1,
②当q≠1时,${S_n}=\frac{{2(1-{q^n})}}{1-q},{T_n}=\frac{{2q(1-{q^{2n}})}}{{1-{q^2}}}$,
∴$\frac{S_n}{T_n}=\frac{1+q}{{q(1+{q^n})}}$.
若0<q<1,$\lim_{n→∞}\frac{S_n}{T_n}$=$\frac{1+q}{q}$.
若q>1,$\lim_{n→∞}\frac{S_n}{T_n}$=0.
故:$\lim_{n→∞}\frac{S_n}{T_n}$=$\left\{\begin{array}{l}1,q=1\\ 0,q>1\\ \frac{1+q}{q}\begin{array}{l}{\;},{0<q<1}\end{array}\end{array}\right.$.
点评 本题考查了等比数列的通项公式与前n项和公式、数列极限运算法则,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{6}$ | B. | 2 | C. | $\frac{5}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(λ)先增大后减小,且最小值为1 | B. | f(λ)先减小后增大,且最小值为1 | ||
| C. | f(λ)先减小后增大,且最小值为$\frac{{\sqrt{5}}}{5}$ | D. | f(λ)先增大后减小,且最小值为$\frac{{\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x1>x2 | B. | |x1|<|x2| | C. | x1>|x2| | D. | x12>x22 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com