精英家教网 > 高中数学 > 题目详情
8.设首项为2,公比为q(q>0)的等比数列的前n项和为Sn,且Tn=a2+a4+a6+…+a2n
(1)求Sn
(2)求$\lim_{n→∞}\frac{S_n}{T_n}$.

分析 (1)对q分类讨论,利用等比数列的前n项和公式可得Sn
(2)利用数列极限法则即可得出.

解答 $\begin{array}{l}解:(1)当q=1,{S_n}=2n;\\ 当q>0且q≠1,{S_n}=\frac{{2(1-{q^n})}}{1-q}\\∴{S_n}=\left\{{\begin{array}{l}{2n,q=1}\\{\frac{{2(1-{q^n})}}{1-q},q>0且q≠1}\end{array}}\right.\end{array}$
(2)①当q=1时,Sn=2n,Tn=2n,$\lim_{n→∞}\frac{S_n}{T_n}$=1,
②当q≠1时,${S_n}=\frac{{2(1-{q^n})}}{1-q},{T_n}=\frac{{2q(1-{q^{2n}})}}{{1-{q^2}}}$,
∴$\frac{S_n}{T_n}=\frac{1+q}{{q(1+{q^n})}}$.
若0<q<1,$\lim_{n→∞}\frac{S_n}{T_n}$=$\frac{1+q}{q}$.
若q>1,$\lim_{n→∞}\frac{S_n}{T_n}$=0.
故:$\lim_{n→∞}\frac{S_n}{T_n}$=$\left\{\begin{array}{l}1,q=1\\ 0,q>1\\ \frac{1+q}{q}\begin{array}{l}{\;},{0<q<1}\end{array}\end{array}\right.$.

点评 本题考查了等比数列的通项公式与前n项和公式、数列极限运算法则,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是(  )
A.$\frac{5}{6}$B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设x,y满足线性约束条件$\left\{\begin{array}{l}{2x-y+2≥0}\\{x-3y+1≤0}\\{x+y-2≤0}\end{array}\right.$,若z=ax-y(a>0)取得最大值的最优解有数多个,则实数a的值为(  )
A.2B.$\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.二元一次方程组$\left\{\begin{array}{l}2x+3y=1\\ x-2y=-1\end{array}\right.$的增广矩阵是$[\begin{array}{l}{2}&{3}&{1}\\{1}&{-2}&{-1}\end{array}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在等比数列{an}中,前n项和Sn=2n+a(n∈N*),则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.正方体ABCD-A1B1C1D1的棱长为1,点E,F分别在线段AC,D1B上,且$\frac{AE}{AC}=\frac{{{D_1}F}}{{{D_1}B}}$=λ(λ∈(0,+∞)),直线EF与直线AD1,B1C所成的角为θ1,θ2,又f(λ)=|EF|[cos(θ12)+sin(θ12)],则f(λ)随着λ增大时(  )
A.f(λ)先增大后减小,且最小值为1B.f(λ)先减小后增大,且最小值为1
C.f(λ)先减小后增大,且最小值为$\frac{{\sqrt{5}}}{5}$D.f(λ)先增大后减小,且最小值为$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若y=|3sin(ωx+$\frac{π}{12}$)+2|的图象向右平移$\frac{π}{6}$个单位后与自身重合,且y=tanωx的一个对称中心为($\frac{π}{48}$,0),则ω的最小正值为24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=x2+2cosx,若f(x1)>f(x2),则下列不等式一定成立的是(  )
A.x1>x2B.|x1|<|x2|C.x1>|x2|D.x12>x22

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数y=f(x),x∈R,对于任意的x,y∈R,f(x-y)=f(x)-f(y),当x>0时,f(x)>0.
(1)求证:f(0)=0,且f(x)是奇函数;
(2)求证:y=f(x),x∈R是增函数;
(3)设f(1)=2,求f(x)在x∈[-5,5]时的最大值与最小值.

查看答案和解析>>

同步练习册答案