精英家教网 > 高中数学 > 题目详情
有下列结论:
(1)命题p:?x∈R,x2>0总成立,则命题?p:?x∈R,x2≤0总成立.
(2)设p:
x
x+2
>0,q:x2+x-2>0
,则p是q的充分不必要条件.
(3)命题:若ab=0,则a=0或b=0,其否命题是假命题.
(4)非零向量
a
b
满足|
a
|=|
b
|=|
a
-
b
|
,则
a
a
+
b
的夹角为30°.
其中正确的结论有(  )
A.0个B.1个C.2个D.3个
命题p:?x∈R,x2>0总成立,则命题?p:?x∈R,使x2≤0成立.故(1)错误;
p:
x
x+2
>0,q:x2+x-2>0
,则p是q的必要不充分条件,故(2)错误;
命题:若ab=0,则a=0或b=0,的否命题是,若ab≠0,则a≠0且b≠0,为真命题,故(3)错误;
由向量加减法的平行四边形法则,我们可得非零向量
a
b
满足|
a
|=|
b
|=|
a
-
b
|
,则
a
a
+
b
的夹角为30°.故(4)正确;
故选B
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列结论:
①函数y=x3在R上既是奇函数又是增函数.
②命q:?x∈R,tanx=1;命题p:?x∈R,x2-x+1>0,命题“p∧¬q”是假命题;
③函数y=f(x)的图象与直线x=a至多一个交点.
④在△ABC中,若
AB
CA
>0,则∠A为锐角
其中正确的命题有(  )个.(  )

查看答案和解析>>

同步练习册答案