精英家教网 > 高中数学 > 题目详情
已知数列{an}满足an+1-2an=0,且a3+2是a2,a4的等差中项.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)若bn=-anlog2an,Sn=b1+b2+…+bn,求使Sn+n•2n+1>50成立的正整数n的最小值.
分析:(Ⅰ)由题意知数列{an}是以2为公比的等比数列.再由a3+2是a2,a4的等差中项,可知a1=2,所以数列{an}的通项公式an=2n
(Ⅱ)由题设条件知,bn=-n•2n,由此可知Sn=-2-2•22-3•23-4•24--n•2n,2Sn=-22-2•23-3•24-4•25--(n-1)•2n-n•2n+1,再由错位相减法可知使Sn+n•2n+1>50成立的正整数n的最小值为5.
解答:解:(Ⅰ)∵an+1-2an=0,即an+1=2an
∴数列{an}是以2为公比的等比数列.
∵a3+2是a2,a4的等差中项,∴a2+a4=2a3+4,
∴2a1+8a1=8a1+4,∴a1=2,
∴数列{an}的通项公式an=2n
(Ⅱ)由(Ⅰ)及bn=-anlog2an得,bn=-n•2n
∵Sn=b1+b2++bn
∴Sn=-2-2•22-3•23-4•24--n•2n
∴2Sn=-22-2•23-3•24-4•25--(n-1)•2n-n•2n+1
②-①得,Sn=2+22+23+24+25++2n-n•2n+1
=
2(1-2n)
1-2
-n•2n+1=(1-n)•2n+1-2

要使Sn+n•2n+1>50成立,只需2n+1-2>50成立,即2n+1>52,n35
∴使Sn+n•2n+1>50成立的正整数n的最小值为5.
点评:本题考查数列性质的综合运用,解题时要注意计算能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案