精英家教网 > 高中数学 > 题目详情

已知曲线数学公式,曲线数学公式,若当x∈[-2,2]时,曲线C1在曲线C2的下方,则实数m的取值范围是________.

m>3
分析:由题意当x∈[-2,2]时,曲线C1在曲线C2的下方,则可构造出函数F(x)=,问题可以转化为F(x)>0在x∈[-2,2]上恒成立
解答:令F(x)=,故F(x)>0在x∈[-2,2]上恒成立
∵F'(x)=-x2+2x-<0恒成立
∴F(x) 在[-2,2]上单调递减,
∴F(2)=m-3>0,得m>3
故答案为m>3
点评:本题考查利用导数求闭区间上函数的最值,解答本题的关键是构造出新函数,将图形的位置关系问题用新函数的函数值恒为正来表示,再利用导数研究出新函数的最小值,令其最小值大于0,即可得出实数m的取值范围,根据问题构造新函数,这是数学解题中的一个技巧,根据实际情况恰当转化,用到了转化化归的思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ex+ax,g(x)=exlnx(e是自然对数的底数).
(1)若曲线y=f(x)在x=1处的切线也是抛物线y2=4(x-1)切线,求a的值;
(2)若对于任意x∈R,f(x)>0恒成立,试确定实数a的取值范围;
(3)当a=-1时,是否存在x0∈(0,+∞),使曲线C:y=g(x)-f(x)在点x=x0处的切线斜率与f(x)在R上的最小值相等?若存在,求符合条件的x0的个数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面内与两定点A(2,0),B(-2,0)连线的斜率之积等于-
1
4
的点P的轨迹为曲线C1,椭圆C2以坐标原点为中心,焦点在y轴上,离心率为
5
5

(Ⅰ)求C1的方程;
(Ⅱ)若曲线C1与C2交于M、N、P、Q四点,当四边形MNPQ面积最大时,求椭圆C2的方程及此四边形的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成.两相接点M,N均在直线x=5上,圆弧C1的圆心是坐标原点O,半径为r1=13; 圆弧C2过点A(29,0).
(1)求圆弧C2所在圆的方程;
(2)曲线C上是否存在点P,满足PA=
30
PO?若存在,指出有几个这样的点;若不存在,请说明理由;
(3)已知直线l:x-my-14=0与曲线C交于E、F两点,当EF=33时,求坐标原点O到直线l的距离.

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(北京卷解析版) 题型:解答题

已知曲线C:(m∈R)

(1)   若曲线C是焦点在x轴点上的椭圆,求m的取值范围;

(2)     设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线。

【解析】(1)曲线C是焦点在x轴上的椭圆,当且仅当解得,所以m的取值范围是

(2)当m=4时,曲线C的方程为,点A,B的坐标分别为

,得

因为直线与曲线C交于不同的两点,所以

设点M,N的坐标分别为,则

直线BM的方程为,点G的坐标为

因为直线AN和直线AG的斜率分别为

所以

,故A,G,N三点共线。

 

查看答案和解析>>

同步练习册答案