已知曲线C:(m∈R)
(1) 若曲线C是焦点在x轴点上的椭圆,求m的取值范围;
(2) 设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线。
【解析】(1)曲线C是焦点在x轴上的椭圆,当且仅当解得,所以m的取值范围是
(2)当m=4时,曲线C的方程为,点A,B的坐标分别为,
由,得
因为直线与曲线C交于不同的两点,所以
即
设点M,N的坐标分别为,则
直线BM的方程为,点G的坐标为
因为直线AN和直线AG的斜率分别为
所以
即,故A,G,N三点共线。
科目:高中数学 来源: 题型:
|
|
a+mb |
1+m |
a2+mb2 |
1+m |
查看答案和解析>>
科目:高中数学 来源: 题型:
π |
4 |
|
| ||
2 |
| ||
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
|
5 |
5 |
1 |
2 |
5 |
2 |
1 |
2 |
5 |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
|
ξ |
|
ξ |
ξ2 |
ξ |
|
π |
4 |
2 |
1 |
3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com