精英家教网 > 高中数学 > 题目详情
等比数列{an}共2n项,其和为-240,且奇数项的和比偶数项的和大80,则公比q=__________.

解析:根据题意得

S=-80,S=-160,

q===2.

答案:2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等比数列{an}的首项为a1=2,公比为q(q为正整数),且满足3a3是8a1与a5的等差中项;数列{bn}满足2n2-(t+bn)n+
32
bn=0(t∈R,n∈N*).
(1)求数列{an}的通项公式;
(2)试确定t的值,使得数列{bn}为等差数列;
(3)当{bn}为等差数列时,对任意正整数k,在ak与ak+1之间插入2共bk个,得到一个新数列{cn}.设Tn是数列{cn}的前n项和,试求满足Tn=2cm+1的所有正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an} 是公差为d(d≠0)的等差数列,Sn为其前n项和.
(1)若a2,a3,a6依次成等比数列,求其公比q;
(2)若
OPn
=(n,
Sn
n
)(n∈N*)
,求证:对任意的m,n∈N*,向量
PmPn
与向量
b
=(2,d)
共线;
(3)若a1=1,d=
1
2
OQn
=(
an
n
Sn
n2
)(n∈N*)
,问是否存在一个半径最小的圆,使得对任意的n∈N*,点Qn都在这个圆内或圆周上.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一非零向量列{an}满足:a1=(1,2),an=(xnyn)=(-
1
2
yn-1
1
2
xn-1)(n≥2)

(1)证明:{|an|}是等比数列;
(2)求向量an-1与an的夹角θ(n≥2);
(3)把向量a1,a2,…,an…中所有与a1共线的向量按原来的前后顺序排成一列,记为b1,b2,…,bn,…,其中b1=a1,若
OBn
=b1+b2+…+bn=(TnSn)
(O是坐标原点),求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列a,b,c为各项都是正数的等差数列,公差为d(d>0),在a,b之间和b,c之间共插入m个实数后,所得到的m+3个数所组成的数列{an}是等比数列,其公比为q.
(1)若a=1,m=1,求公差d;
(2)若在a,b之间和b,c之间所插入数的个数均为奇数,求所插入的m个数的乘积(用a,c,m表示),求证:q是无理数.

查看答案和解析>>

科目:高中数学 来源: 题型:

设事件A发生的概率为P,若在A发生的条件下B发生的概率为P′,则由A产生B的概率为PP′,根据这一规律解答下题:一种掷硬币走跳棋的游戏:棋盘上有第0,1,2,3,…,100,共101站,设棋子跳到第n站的概率为Pn,一枚棋子开始在第0站(即P0=1),由棋手每掷一次硬币,棋子向前跳动一次,若硬币出现正面则棋子向前跳动一站,出现反面则向前跳动两站,直到棋子跳到第99站(获胜)或100站(失败)时,游戏结束.已知硬币出现正反面的概率都为
12

(1)求P1,P2,P3,并根据棋子跳到第n+1站的情况,试用Pn,Pn-1表示Pn+1
(2)设an=Pn-Pn-1(1≤n≤100),求证:数列{an}是等比数列,并求出{an}的通项公式;
(3)求玩该游戏获胜的概率.

查看答案和解析>>

同步练习册答案