精英家教网 > 高中数学 > 题目详情
(2013•杭州一模)已知抛物线C:y2=2px(p>0)和⊙M:x2+y2+8x-12=0,过抛物线C上一点P(x0,y0)(y0≥0)作两条直线与⊙M相切与A、B两点,圆心M到抛物线准线的距离为
9
2

(Ⅰ)求抛物线C的方程;
(Ⅱ)当P点坐标为(2,2)时,求直线AB的方程;
(Ⅲ)设切线PA与PB的斜率分别为k1,k2,且k1•k2=
1
2
,求点P(x0,y0)的坐标.
分析:(Ⅰ)利用抛物线的定义即可得出;
(Ⅱ)利用两圆的根轴即可得出;
(Ⅲ)利用直线与圆相切的充要条件、点到直线的距离公式即可得出.
解答:解:(Ⅰ)由⊙M:x2+y2-8x+12=0,配方得(x-4)2+y2=4,∴圆心M(4,0),半径r=2.
由题意知:4+
p
2
=
9
2
,解得p=1,
∴抛物线C的方程为y2=2x.     
(Ⅱ)设P(2,2),∵P,A,B,M四点共圆,∴此圆的方程为:(x-4)(x-2)+(y-2)(y-0)=0,①
又⊙M:x2-8x+y2+12=0,②
又由①-②得直线AB的方程:x-y-2=0.                        
(Ⅲ)设过P的直线l方程为y-y0=k(x-x0),由于⊙M与直线l相切,得到
|4k+y0-kx0|
1+k2
=2

整理得到:(
x
2
0
-8x0+12)k2+[2y0(4-x0)]k+
y
2
0
-4=0

k1k2=
y
2
0
-4
x
2
0
-8x0+12
=
1
2
,即
x
2
0
-12x0+20=0
,∴x0=2或10,
经检验得点P坐标为(10,2
5
)
点评:熟练掌握抛物线的定义、两圆的根轴的性质、直线与圆相切的充要条件、点到直线的距离公式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•杭州一模)若实数x,y满足不等式组
y-x≥0
x+y-7≤0
,则2x+y的最大值为
21
2
21
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州一模)设函数f(x)=|logax|(0<a<1)的定义域为[m,n](m<n),值域为[0,1],若n-m的最小值为
1
3
,则实数a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州一模)设等差数列{an}满足:
sin2a3-cos2a3+cos2a3cos2a6-sin2a3sin2a6
sin(a4+a5)
=1,公差d∈(-1,0).若当且仅当n=9时,数列{an}的前n项和Sn取得最大值,则首项a1取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州一模)设a∈R,则“a=4”是“直线l1:ax+2y-3=0与直线l2:2x+y-a=0平行”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州一模)设等差数列{an}的前n项和是Sn,若-am<a1<-am+1(m∈N*,且m≥2),则必定有(  )

查看答案和解析>>

同步练习册答案