精英家教网 > 高中数学 > 题目详情
20.函数f(x)=lg|2x-1|的对称轴为x=$\frac{1}{2}$.

分析 利用函数y=lg|x|图象的对称轴为x=0,求出函数y=lg|2x-1|图象的对称轴.

解答 解:∵函数y=lg|x|图象的对称轴是x=0,
∴函数y=lg|2x-1|图象的对称轴为2x-1=0,即x=$\frac{1}{2}$.
故答案为:x=$\frac{1}{2}$.

点评 本题考查了函数对称性的应用问题,也考查了分析与解决问题的能力,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知实数x,y满足条件$\left\{\begin{array}{l}{4{x}^{2}-{y}^{2}≥0}\\{x+ay+b≤0}\\{x≥0}\end{array}\right.$,z=x-y的最大值、最小值分别为M、m,且M-m=1,则a+b的取值范围为(  )
A.[$\frac{3\sqrt{3}}{2}$-2,$\frac{\sqrt{3}}{2}$)B.(-$\frac{1}{2}$,$\frac{1}{2}$)C.[$\sqrt{6}$-3,$\frac{1}{2}$)D.($\frac{1}{2}$,$\frac{23}{10}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在一次有奖明信片的100000个有机会中奖的号码(编号00000-99999)中,邮政部门按照随机抽取的方式确定后两位是23的作为中奖号码,这是运用了系统抽样方法.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=ax3+bx2+(c-3a-2b)x+d(a>0)的图象如图.
(Ⅰ)求c,d的值;
(Ⅱ)若函数f(x)在x=2处的切线方程为3x+y-11=0,求函数f(x)的解析式;
(Ⅲ)若x0=5,方程f(x)=8a有三个不同的根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.公差为1的等差数列{an}中,Sn为其前n项的和,若仅S9在所有的Sn中取最小值,则首项a1的取值范围为(  )
A.[-10,-9]B.(-10,-9)C.[-9,-8]D.(-9,-8)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=$\frac{1-x}{1+x}$.
(1)求f(f(2)))的值;
(2)若实数a满足f(a2)=$-\frac{3}{5}$,且lg2a-1<0,求a的值;
(3)设函数f1(x)=f(x)=$\frac{1-x}{1+x}$(x≠-1),对于一切正整数n,都有fn+1(x)=f1(fn(x)),且f3(x)=f4(x),求f2012(x)的值;
(4)设函数φ(x)=$\frac{1+x}{x-1}|x-2{|}^{\frac{1}{2}}$(x≠1),若函数g(x)=f(x)•φ(x),t=a2-2a+$\frac{13}{3}$(a∈R),试判断g(1.2),g(2.5),g(t)的大小关系.(请按由大到小的顺序排)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知全集U=R,集合A=$\left\{{x\left|{\frac{1}{x}<1}\right.}\right\}$,则∁UA=[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图(1),已知A,B,C.P四点共面,PC上AC,AB=BC,D,F分别为AC,PC的中点,DE⊥AP于E.把平面四边形ABCP沿AC折成直二面角,如图(2).
(1)求i正:AP⊥平面BDE;
(2)求证:平面BDF⊥平面BDE;
(3)延长AB至H,使得AB=BH,如图(3).在AP上是否存在点Q,使得平面CHQ∥平面BDE?若存在,指出Q点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知,命题p:?x∈R,x2+ax+2≥0,命题q:?x∈[-3,-$\frac{1}{2}$],x2-ax+1=0.
(1)若命题p为真命题,求实数a的取值范围;
(2)若命题q为真命题,求实数a的取值范围;
(3)若命题“p∨q”为真命题,且命题“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案