精英家教网 > 高中数学 > 题目详情
13.已知幂函数f(x)存在反函数g(x),且g(3$\sqrt{3}$)=$\frac{\sqrt{3}}{3}$,则幂函数的表达式为f(x)=x-3

分析 设出幂函数f(x)=xα,由其反函数的图象经过(3$\sqrt{3}$,$\frac{\sqrt{3}}{3}$),可得f(x)=xα的图象过点( $\frac{\sqrt{3}}{3}$,3 $\sqrt{3}$)代入函数解析式求得α的值得答案.

解答 解:设幂函数f(x)=xα
∵其反函数的图象经过(3$\sqrt{3}$,$\frac{\sqrt{3}}{3}$),
∴原函数f(x)=xα的图象过点($\frac{\sqrt{3}}{3}$,3$\sqrt{3}$),
即3$\sqrt{3}$=($\frac{\sqrt{3}}{3}$)α,解得:α=-3.
∴f(x)的表达式为f(x)=x-3
故答案为:f(x)=x-3

点评 本题考查了幂函数的概念,考查了互为反函数的两个函数图象间的关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.求下列函数的值域:
(1)y=$\frac{x}{x-4}$(0≤x≤6且x≠4);
(2)y=$\frac{3x}{2x-4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在等腰△ABC中,AB=AC,|$\overrightarrow{AC}$+$\overrightarrow{BC}$|=2$\sqrt{6}$,则△ABC面积的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在平面直角坐标系内,已知⊙O1:(x+2)2+y2=1,⊙O2:(x-2)2+y2=1,过平面内一点P分别作⊙O1和⊙O2的切线PM,PN,其中M,N为切点,且PM=$\sqrt{3}$PN,记△PMO1和△PNO2的面积分别为S1,S2,则(S1+S22的最大值为16+4$\sqrt{13}$+8$\sqrt{3}$+2$\sqrt{39}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=x,(x≥1)函数g(x)=$\frac{1}{{x}^{2}-2x+4}$,(0<x$≤\sqrt{a}$+1,其中a>0).
令h(x)为函数f(x)与g(x)的积函数.
(1)求函数h(x)的表达式,并求出其定义域;
(2)当h(x)的值域为[$\frac{1}{3}$,$\frac{1}{2}$]时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数z=$\frac{1-i}{m+i}$为纯虚数,其中i为虚数单位,则实数m的值是(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设数列{an}满足an+1=2an,a1=1,数列{an}的前n项和为Sn,则S2015=(  )
A.22015-1B.22016-2C.22014-1D.1-22015

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.化简式子$\frac{2sin20°-cos10°}{cos80°}$的值是(  )
A.-$\sqrt{3}$B.$\sqrt{3}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.集合{x∈N|2≤x≤7}中元素的个数为(  )
A.5B.6C.7D.8

查看答案和解析>>

同步练习册答案