精英家教网 > 高中数学 > 题目详情
18.已知复数z=$\frac{1-i}{m+i}$为纯虚数,其中i为虚数单位,则实数m的值是(  )
A.1B.-1C.2D.-2

分析 化简复数z,令实部为0,即可求出实数m的值.

解答 解:复数z=$\frac{1-i}{m+i}$=$\frac{(1-i)(m-i)}{{m}^{2}{-i}^{2}}$=$\frac{(m-1)-(m+1)i}{{m}^{2}+1}$为纯虚数,
∴m-1=0,此时z=-i为纯虚数,
∴实数m的值是1.
故选:A.

点评 本题考查了复数的化简与运算问题,也考查了纯虚数的定义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知数列{an}的前n项和Sn=n2-2n,则该数列的通项为an=2n-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知$\overrightarrow{a}$=(0,1),$\overrightarrow{b}$=(2,0),则|2$\overrightarrow{a}$+$\overrightarrow{b}$|=4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知,命题p:?x∈R,x2+ax+2≥0,命题q:?x∈[-3,-$\frac{1}{2}$],x2-ax+1=0.
(1)若命题p为真命题,求实数a的取值范围;
(2)若命题q为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知幂函数f(x)存在反函数g(x),且g(3$\sqrt{3}$)=$\frac{\sqrt{3}}{3}$,则幂函数的表达式为f(x)=x-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知角α的终边上一点的坐标为(2sin$\frac{π}{3}$,-2cos$\frac{π}{3}$),则α的最小正值为$\frac{11π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点A(x1,f(x1)),B(x2,f(x2))是函数f(x)=2sin(ωx+φ)(ω>0.-$\frac{π}{2}$<φ<0)图象上的任意两点,且角φ的终边经过点P(1,-$\sqrt{3}$),若|f(x1)-f(x2)|=4,|x1-x2|的最小值为$\frac{π}{3}$.
(1)求函数f(x)的解析式;
(2)将y=f(x)的图象向左平移$\frac{π}{6}$个单位,再将得到的图象的横坐标变为原来的2倍(纵坐标不变)后得到的y=g(x)的图象,求函数y=g(x)的对称中心坐标;
(3)当x∈[0,$\frac{π}{6}$],不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数f(x)=cos2x+asinx在区间($\frac{π}{6}$,$\frac{π}{2}$)是减函数,则实数a∈(  )
A.(-∞,2)B.(-∞,2]C.(4,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在长方体ABCD-A′B′C′D′中,$B{B^'}=\sqrt{3}$,B′C′=1,则AA′与BC′所成的角是(  )
A.90°B.45°C.60°D.30°

查看答案和解析>>

同步练习册答案