精英家教网 > 高中数学 > 题目详情
a≠b,若a1x1x2,b成等差数列,a,y1y2y3,b也成等差数列,则
y3-y2
x2-x1
=
3
4
3
4
分析:根据等差数列的定义,把y3-y2和x2-x1都用b-a表示,作比后即可得到答案.
解答:解:由a,x1,x2,b成等差数列,
设其公差为d1,则b=a+3d1d1=
b-a
3

x2-x1=
b-a
3

a,y1,y2,y3,b也成等差数列,
设其公差为d2,则b=a+4d2d2=
b-a
4

y3-y2=
b-a
4

y3-y2
x2-x1
=
b-a
4
b-a
3
=
3
4

故答案为
3
4
点评:本题考查了等差数列的定义和通项公式,是基础的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个命题:①函数f(x)=3sin(2x-
π
3
)
的图象关于点(-
π
6
,0)
对称;②若a≥b>-1,则
a
1+a
b
1+b
;③存在实数x,使x3+x2+1=0;④设P(x1,y1)为圆O1:x2+y2=9上任意一点,圆O2:(x-a)2+(y-b)2=1,当(x1-a)2+(y1-b)2=1时,两圆相切.其中正确命题的序号是
 
.(把你认为正确的都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•茂名二模)在实数集R中,我们定义的大小关系“》”为全体实数排了一个“序”.类似的,我们在平面向量集D={
a
|
a
=(x,y),x∈R,y∈R}上也可以定义一个称为“序”的关系,记为“》”.定义如下:
对于任意两个向量
a1
=(x1,y1),
a2
=(x2,y2),
a1
a2
当且仅当“x1>x2”或“x1=x2且y1>y2”.按上述定义的关系“》”,给出如下四个命题:
①若
e1
=(1,0)
e2
=(0,1)
0
=(0,0)
,则
e1
e2
0

②若
a1
a2
a2
a3
,则
a1
a3

③若
a1
a2
,则对于任意
a
∈D
a1
+
a
a2
+
a

④对于任意向量
a
0
0
=(0,0)
,若
a1
a2
,则
a
a1
a
a2

其中真命题的序号为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闸北区二模)如图,P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…是曲线C:y2=
1
2
x(y≥0)
上的点,A1(a1,0),A2(a2,0),…,An(an,0),…是x轴正半轴上的点,且△A0A1P1,△A1A2P2,…,△An-1AnPn,…均为斜边在x轴上的等腰直角三角形(A0为坐标原点).
(1)写出an-1、an和xn之间的等量关系,以及an-1、an和yn之间的等量关系;
(2)猜测并证明数列{an}的通项公式;
(3)设bn=
1
an+1
+
1
an+2
+
1
an+3
+…+
1
a2n
,集合B={b1,b2,b3,…,bn,…},A={x|x2-2ax+a2-1<0,x∈R},若A∩B=∅,求实常数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•眉山二模)设a1≤a2≤…≤an,b1≤b2≤…≤bn为两组实数,c1,c2,…,cn是b1,b2,…,bn的任一排列,我们称S=a1c1+a2c2+a3c3+…+ancn为两组实数的乱序和,S1=a1bn+a2bn-1+a3bn-2+…+anb1为反序和,S2=a1b1+a2b2+a3b3+…+anbn 为顺序和.根据排序原理有:S1≤S≤S2即:反序和≤乱序和≤顺序和.给出下列命题:
①数组(2,4,6,8)和(1,3,5,7)的反序和为60;
②若A=
x
2
1
+
x
2
2
+…+
x
2
n
,B=x1x2+x2x3+…+xn-1xn+xnx1其中x1,x2,…xn都是正数,则A≤B;
③设正实数a1,a2,a3的任一排列为c1,c2,c3
a1
c1
+
a2
c2
+
a3
c3
的最小值为3;
④已知正实数x1,x2,…,xn满足x1+x2+…+xn=P,P为定值,则F=
x
2
1
x2
+
x
2
2
x3
+…+
x
2
n-1
xn
+
x
2
n
x1
的最小值为
P
2

其中所有正确命题的序号为
①③
①③
.(把所有正确命题的序号都填上)

查看答案和解析>>

同步练习册答案