精英家教网 > 高中数学 > 题目详情
设抛物线y2=2px(p>0)的焦点为F,其准线与x轴的交点为Q,过Q点的直线l交抛物线于A,B两点.
(1)若直线l的斜率为
2
2
,求证:
FA
FB
=0

(2)设直线FA,FB的斜率分别为k1,k2,求k1+k2的值.
分析:(1)由点斜式写出直线l的方程,和抛物线方程联立后化为关于x的一元二次方程,利用根与系数关系求出A,B两点的横坐标的和与积,写出向量
FA
FB
的坐标,展开数量积后代入根与系数关系得答案;
(2)设直线l的方程为l:x=ky-
p
2
,和抛物线方程联立后话诶关于y的一元二次方程,写出根与系数关系,由两点式求出斜率后作和化简,代入根与系数关系即可得到答案.
解答:(1)证明:由题意可得l:y=
2
2
(x+
p
2
)

联立
y=
2
2
(x+
p
2
)
y2=2px
,得x2-3px+
p2
4
=0

设A(x1,y1),B(x2,y2),
x1+x2=3p,x1x2=
p2
4

FA
=(x1-
p
2
y1),
FB
=(x2-
p
2
y2)

FA
FB
=(x1-
p
2
)(x2-
p
2
)+y1y2=
3
2
x1x2-
p
4
(x1+x2)+
3
8
p2=0

(2)设直线l:x=ky-
p
2
,与抛物线联立得y2-2pky+p2=0.
y1+y2=2p,y1y2=p2
k1+k2=
y1
x1-
p
2
+
y2
x2-
p
2
=
y1
ky1-p
+
y2
ky2-p
=
2ky1y2-p(y1+y2)
(ky1-p)(ky2-p)
=
2kp2-p•2pk
(ky1-p)(ky2-p)
=0
点评:本题考查了抛物线的简单几何性质,考查了直线与圆锥曲线的关系,涉及直线与圆锥曲线的关系问题,常利用一元二次方程的根与系数关系,采用设而不求的方法解决,此题属中高档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A,B两点,且A,B两点坐标分别为(x1,y1)、(x2,y2),y1>0,y2<0,M是抛物线的准线上的一点,O是坐标原点.若直线MA,MF,MB的斜率分别记为:KMA=a,KMF=b,KMB=c,(如图)
(I)若y1y2=-4,求抛物线的方程;
(II)当b=2时,求a+c的值;
(III)如果取KMA=2,KMB=-
12
时,判定|∠AMF-∠BMF|和∠MFO的值大小关系.并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

7、设抛物线y2=2px(p>0)上一点A(1,2)到点B(x0,0)的距离等于到直线x=-1的距离,则实数x0的值是
1

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线y2=2px(p>0),弦AB过焦点,△ABQ为阿基米德三角形,则△ABQ为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线y2=2px(p>0),弦AB过焦点,△ABQ为其阿基米德三角形,则△ABQ的面积的最小值为(  )
A、
p2
2
B、p2
C、2p2
D、4p2

查看答案和解析>>

同步练习册答案