精英家教网 > 高中数学 > 题目详情
(2012•北京)设不等式组
0≤x≤2
0≤y≤2
,表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是(  )
分析:本题属于几何概型,利用“测度”求概率,本例的测度即为区域的面积,故只要求出题中两个区域:由不等式组表示的区域 和到原点的距离大于2的点构成的区域的面积后再求它们的比值即可.
解答:解:其构成的区域D如图所示的边长为2的正方形,面积为S1=4,
满足到原点的距离大于2所表示的平面区域是以原点为圆心,以2为半径的圆外部,
面积为S2=4-
π×22
4
=4-π,
∴在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率P=
4-π
4

故选D.
点评:本题考查几何概型,几何概型的概率的值是通过长度、面积、和体积、的比值得到,本题是通过两个图形的面积之比得到概率的值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•北京)设a,b∈R.“a=O”是“复数a+bi是纯虚数”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京)设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合.对于A∈S(m,n),记ri(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A)为A的第j列各数之和(1≤j≤n);记K(A)为|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.
(1)如表A,求K(A)的值;
1 1 -0.8
0.1 -0.3 -1
(2)设数表A∈S(2,3)形如
1 1 c
a b -1
求K(A)的最大值;
(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)某家俱公司生产甲、乙两种型号的组合柜,每种组合柜的制造白坯时间、油漆时间如下表:
型号甲 型号乙 生产能力(台/天)
制白坯时间(天) 6 12 120
油漆时间(天) 8 4 64
设该公司安排甲、乙二种柜的日产量分别为x,y,则20x+24y的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京)设A是如下形式的2行3列的数表,
a b c
d e f
满足性质P:a,b,c,d,e,f∈[-1,1],且a+b+c+d+e+f=0.
记ri(A)为A的第i行各数之和(i=1,2),Cj(A)为A的第j列各数之和(j=1,2,3);记k(A)为|r1(A)|,|r2(A)|,|c1(A)|,|c2(A)|,|c3(A)|中的最小值.
(1)对如下数表A,求k(A)的值
1 1 -0.8
0.1 -0.3 -1
(2)设数表A形如
1 1 -1-2d
d d -1
其中-1≤d≤0.求k(A)的最大值;
(Ⅲ)对所有满足性质P的2行3列的数表A,求k(A)的最大值.

查看答案和解析>>

同步练习册答案