精英家教网 > 高中数学 > 题目详情
精英家教网如图椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的四个顶点连成的菱形ABCD的面积为16
3
,直线AD的斜率为
3
2

(1)求椭圆的方程及左、右焦点F1、F2的坐标;
(2)双曲线
x2
u2
-
y2
v2
=1
的渐近线分别与菱形的边平行,且以椭圆焦点F1、F2为焦点,
求双曲线的方程.
分析:(1)由菱形ABCD的面积及直线AD的斜率建立关于a,b的方程即可求得a,b的值,最后写出椭圆方程的焦点坐标即可;
(2)渐近线分别与菱形的边平行,且以椭圆焦点F1、F2为焦点,建立关于u,v的方程即可求得它们的值,最后写出双曲线方程即可;
解答:解:(1)由
b
a
=
3
2
1
2
(2a)(2b)=16
3
得,
a=4,b=2
3

椭圆方程为:
x2
16
+
y2
12
=1
; …(5分)
焦点为:F1(-2,0),F2(2,0);…(7分)
(2)由
v
u
=
3
2
及u2+v2=4得:
u2=
16
7
v2=
12
7

所以,双曲线的方程为:
7x2
16
-
7y2
12
=1
.  …(14分)
点评:本小题主要考查双曲线的标准方程、椭圆的简单性质等基础知识,考查运算求解能力,考查数形结合思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为椭圆的相似比.
(1)已知椭圆C1
x2
4
+y2=1和C2
x2
16
+
y2
4
=1,判断C2与C1是否相似,如果相似则求出C2与C1的相似比,若不相似请说明理由;
(2)已知直线l:y=x+1,在椭圆Cb上是否存在两点M、N关于直线l对称,若存在,则求出函数f(b)=|MN|的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知椭圆C:
x2
a2
+
y2
2
=1(a>
2
)
的左右焦点分别为F1、F2,点B为椭圆与y轴的正半轴的交点,点P在第一象限内且在椭圆上,且PF2与x轴垂直,
F1P
OP
=5

(1)求椭圆C的方程;
(2)设点B关于直线l:y=-x+n的对称点E(异于点B)在椭圆C上,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆C1
x2
4
+y2=1

(1)若椭圆C2
x2
16
+
y2
4
=1
,判断C2与C1是否相似?如果相似,求出C2与C1的相似比;如果不相似,请说明理由;
(2)写出与椭圆C1相似且短半轴长为b的椭圆Cb的方程;若在椭圆Cb上存在两点M、N关于直线y=x+1对称,求实数b的取值范围?
(3)如图:直线y=x与两个“相似椭圆”M:
x2
a2
+
y2
b2
=1
Mλ
x2
a2
+
y2
b2
=λ2(a>b>0,0<λ<1)
分别交于点A,B和点C,D,试在椭圆M和椭圆Mλ上分别作出点E和点F(非椭圆顶点),使△CDF和△ABE组成以λ为相似比的两个相似三角形,写出具体作法.(不必证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆C:
x2
a2
+
y2
b2
=1的离心率为
3
2
,过椭圆C上一点P(2,1)作倾斜角互补的两条直线,分别与椭圆交于点A、B,直线AB与x轴交于点M,与y轴负半轴交于点N.
(Ⅰ)求椭圆C的方程:
(Ⅱ)若S△PMN=
3
2
,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,点F是椭圆W:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点,A、B分别是椭圆的右顶点与上顶点,椭圆的离心率为
1
2
,三角形ABF的面积为
3
3
2

(Ⅰ)求椭圆W的方程;
(Ⅱ)对于x轴上的点P(t,0),椭圆W上存在点Q,使得PQ⊥AQ,求实数t的取值范围;
(Ⅲ)直线l:y=kx+m(k≠0)与椭圆W交于不同的两点M、N (M、N异于椭圆的左右顶点),若以MN为直径的圆过椭圆W的右顶点A,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案