精英家教网 > 高中数学 > 题目详情
已知数列的前项和为,若成等比数列,且时,
(1)求证:当时,成等差数列;
(2)求的前n项和
(1)见解析  (2)

试题分析:
(1)该问已知的一个关系,可以利用之间的关系()消得到关于的二次等式,利用十字相乘法即可得到时,的相邻两项之差为常数,即为等差数列.
(2)分别令带入,得到的值,再利用第一问的结论可以求出时,的通项公式,分进行求解.
试题解析:
(1) 由
.         4分
因为,所以
所以,当时,成等差数列.             7分
(2)由,得
成等比数列,所以),
,所以,从而
所以,                       11分
所以.                   14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列{an},,,记,
,若对于任意,A(n),B(n),C(n)成等差数列.
(1)求数列{an}的通项公式;
(2)求数列{|an|}的前n项和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是公比为的等比数列,且成等差数列.
⑴求的值;
⑵设是以为首项,为公差的等差数列,求的前项和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列项和为,向量,且
(1)求数列的通项公式;
(2)求的前项和,不等式对任意的正整数恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列{an}的前n项和记为Sn,已知a1=1,an+1Sn(n=1,2,3,…),证明:
(1)数列是等比数列;
(2)Sn+1=4an.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在数列中,其前项和为,满足.
(1)求数列的通项公式;
(2)设为正整数),求数列的前项和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

我国是一个人口大国,随着时间推移,老龄化现象越来越严重,为缓解社会和家庭压力,决定采用养老储备金制度.公民在就业的第一年交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储备金数目a1,a2,…,an是一个公差为d的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定利率为r(r>0),那么,在第n年末,第一年所交纳的储备金就变为a1(1+r)n-1,第二年所交纳的储备金就变为a2(1+r)n-2,…,以Tn表示到第n年所累计的储备金总额.
(1)写出Tn与Tn-1(n≥2)的递推关系式;
(2)求证:Tn=An+Bn,其中{An}是一个等比数列,{Bn}是一个等差数列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若数列{an}满足an+1=an+an+2(n∈N*),则称数列{an}为“凸数列”.
(1)设数列{an}为“凸数列”,若a1=1,a2=-2,试写出该数列的前6项,并求出前6项之和;
(2)在“凸数列”{an}中,求证:an+3=-an,n∈N*
(3)设a1=a,a2=b,若数列{an}为“凸数列”,求数列前2011项和S2011.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是等差数列,,设,则数列
的通项公式

查看答案和解析>>

同步练习册答案