精英家教网 > 高中数学 > 题目详情
17.二项式${(\sqrt{x}-\root{3}{x})^9}$的展开式中有理项共有(  )
A.1项B.2项C.3项D.4项

分析 在二项展开式的通项公式中,令x的幂指数等于整数,求出r的值,即可求得展开式中有理项的个数.

解答 解:二项式${(\sqrt{x}-\root{3}{x})^9}$的展开式的通项公式为Tr+1=${C}_{9}^{r}$•(-1)r•${x}^{\frac{9}{2}-\frac{r}{6}}$,
令$\frac{9}{2}$-$\frac{r}{6}$ 为整数,可得r=3,9,故二项式${(\sqrt{x}-\root{3}{x})^9}$的展开式中有理项共有2项,
故选:B.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.直线x+y=1与直线y=-2x+1的交点坐标是(  )
A.(1,0)B.(0,1)C.(-1,0)D.(0,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ax3+bx2+cx的导函数为h(x),f(x)的图象在点(-2,f(-2))处的切线方程为3x-y+4=0,且h′(-$\frac{2}{3}$)=0,又直线y=x是函数g(x)=kxex的图象的一条切线
(1)求函数f(x)的解析式及k的值.
(2)若f(x)≤g(x)-m+1对于任意x∈[0,+∞)恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.对于数列{xn},如果存在一个正整数m,使得对任意的n(n∈N*)都有xn+m=xn成立,那么就把这样一类数列{xn}称作周期为m的周期数列,m的最小值称作数列{xn}的最小正周期,以下简称周期.例如当xn=2时{xn}是周期为1的周期数列,当yn=sin($\frac{π}{2}$n)时{yn}是周期为4的周期数列.
(Ⅰ)设数列{an}满足an+2=an+1-an(n∈N*),a1=a,a2=b(a,b不同时为0),求证:数列{an}是周期为6的周期数列,并求数列{an}的前2013项的和S2013
(Ⅱ)设数列{an}的前n项和为Sn,且4Sn=(an+1)2
①若an>0,试判断数列{an}是否为周期数列,并说明理由;
②若anan+1<0,试判断数列{an}是否为周期数列,并说明理由;
(Ⅲ)设数列{an}满足an+2=an+1-an+1(n∈N*),a1=2,a2=3,数列{an}的前n项和为Sn,试问是否存在p,q,使对任意的n∈N*都有p≤(-1)n$\frac{S_n}{n}$≤q成立,若存在,求出p,q的取值范围;不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p:“?x>0,有ex≥1成立,则¬p为(  )
A.?x0≤0,有ex0<l成立B.?x0≤0,有ex0≥1成立
C.?x0>0,有ex0<1成立D.?x0>0,有ex0≤l成立

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)是定义在足上的奇函数,它的图象关于直线x=l对称,且f(x)=x(0<x≤1).若函数 y=f(x)-$\frac{1}{x}$-a以在区间[-10,10]上有10个零点(互不相同),则实数口的取值范围是$[-\frac{1}{10},\frac{1}{10}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列各组函数中,表示同一函数的是(  )
A.f(x)=$\root{5}{{x}^{5}}$与f(x)=$\sqrt{{x}^{2}}$B.y=x与$y=\root{3}{x^3}$
C.$y=\frac{(x-1)(x+3)}{x-1}$与y=x+3D.y=1与y=x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}中,$a_1^{\;}=\frac{1}{4}$,其前n项的和为Sn,且满足an=$\frac{2{{S}_{n}}^{2}}{{2S}_{n}-1}$(n≥1).
(Ⅰ) 求证:数列{$\frac{1}{{S}_{n}}$}是等差数列;
(Ⅱ) 证明:S1+$\frac{1}{2}$S2+$\frac{1}{3}$S3+…+$\frac{1}{n}$Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知分段函数f(x)=$\left\{\begin{array}{l}{x+4,x≤0}\\{{x}^{2}-2x,0<x≤4}\\{-x+2,x>4}\end{array}\right.$,若f(a)=-1,求a的值.

查看答案和解析>>

同步练习册答案