精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)是定义在足上的奇函数,它的图象关于直线x=l对称,且f(x)=x(0<x≤1).若函数 y=f(x)-$\frac{1}{x}$-a以在区间[-10,10]上有10个零点(互不相同),则实数口的取值范围是$[-\frac{1}{10},\frac{1}{10}]$.

分析 根据f(x)的图象关于x=1对称得f(1+x)=f(1-x),由f(x)是R上的奇函数求出函数的周期,再画出f(x)和y=$\frac{1}{x}$的图象(第一象限部分),由图得函数y=f(x)-$\frac{1}{x}$-a在区间[-10,10]上有10个零点的条件,列出不等式组求出实数a的取值范围.

解答 因为f(x)是R上的奇函数,所以f(x+1)=-f(x-1).
所以f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x).
则f(x)是周期为4的函数,
由f(x)=x(0<x≤1)画出f(x)和y=$\frac{1}{x}$的图象(第一象限部分):

因为函数y=f(x)-$\frac{1}{x}$-a在区间[-10,10]上有10个零点,
所以y=f(x)与y=$\frac{1}{x}$+a在区间[-10,10]上有10个不同的交点,
因为y=f(x)与y=$\frac{1}{x}$是奇函数,所研究第一象限的部分交点问题即可,
而y=$\frac{1}{x}$+a的图象是由y=$\frac{1}{x}$的图象上下平移得到,
由图得,向上平移时保证图象第三象限的部分在x轴的下方,则第一象限的部分有4个交点,第三象限的部分有6个交点,
同理向下平移时保证图象第一象限的部分在x轴的上方,则第一象限的部分有6个交点,
第三象限的部分有4个交点,即$\left\{\begin{array}{l}{-\frac{1}{10}+a≤0}\\{\frac{1}{10}+a≥0}\end{array}\right.$,解得a∈$[-\frac{1}{10},\frac{1}{10}]$.
故答案为:$[-\frac{1}{10},\frac{1}{10}]$.

点评 本题考查函数的周期性、奇偶性、对称性的综合应用,图象平移问题,以及反比列函数的图象,考查数形结合,数形结合是高考中常用的方法,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知f(x)=$\sqrt{2}$sin(x-$\frac{π}{4}$)+sin2x,则f(x)的值域为[-1-$\sqrt{2}$,$\frac{5}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数y=3$\sqrt{x-5}$+4$\sqrt{6-x}$,则函数y的值域为[3,6].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,a,b,c分别是角A,B,C的对边,且满足$\frac{b}{a}$+$\frac{a}{b}$=4cosC.
(Ⅰ)求$\frac{si{n}^{2}A+si{n}^{2}B}{si{n}^{2}C}$的值;
(Ⅱ)若tanA=2tanB,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.二项式${(\sqrt{x}-\root{3}{x})^9}$的展开式中有理项共有(  )
A.1项B.2项C.3项D.4项

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.记定义在R上的函数f(x)的导函数为f′(x).如果存在x0∈[a,b],使得f(b)-f(a)=f′(x0)(b-a)成立,则称x0为函数f(x)在区间[a,b]上的“中值点”.那么函数f(x)=x+lnx在区间[e,e2]上的“中值点”为e2-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.校团委组织“中国梦,我的梦”知识演讲比赛活动,现有4名选手参加决赛,若每位选手都可以从4个备选题目中任选出一个进行演讲,则恰有一个题目没有被这4位选手选中的情况有144种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:
x24568
y3040605070
(1)求线性回归方程;
(2)预测当广告费支出7(百万元)时的销售额.
附:$\left\{\begin{array}{l}\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}\\ \hat a=\overline y-\hat b\overline x\end{array}\right.=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知过点P(1,1)作圆x2+y2-4x-6y+12=0的切线,求切线方程.

查看答案和解析>>

同步练习册答案