精英家教网 > 高中数学 > 题目详情
10.在△ABC中,a,b,c分别是角A,B,C的对边,且满足$\frac{b}{a}$+$\frac{a}{b}$=4cosC.
(Ⅰ)求$\frac{si{n}^{2}A+si{n}^{2}B}{si{n}^{2}C}$的值;
(Ⅱ)若tanA=2tanB,求sinA的值.

分析 (Ⅰ)根据余弦定理和正弦定理化简已知的式子,即可求出式子的值;
(Ⅱ)利用商的关系化简tanA=2tanB,再根据余弦定理和正弦定理化简得到等式,联立(1)的结论求出a、b、c的关系,利用余弦定理求出cosA,再由内角的范围和平方关系求出sinA的值.

解答 解:(Ⅰ)已知等式整理得:$\frac{{a}^{2}+{b}^{2}}{ab}$=4cosC,即$\frac{{a}^{2}+{b}^{2}}{2}$=2abcosC,
由余弦定理得:c2=a2+b2-2abcosC=a2+b2-$\frac{{a}^{2}+{b}^{2}}{2}$=$\frac{{a}^{2}+{b}^{2}}{2}$,
即$\frac{{a}^{2}+{b}^{2}}{{c}^{2}}$=2,
利用正弦定理化简得:$\frac{si{n}^{2}A+si{n}^{2}B}{si{n}^{2}C}$=$\frac{{a}^{2}+{b}^{2}}{{c}^{2}}$=2;
(Ⅱ)∵tanA=2tanB,
∴$\frac{sinA}{cosA}=\frac{2sinB}{cosB}$,则sinAcosB=2sinBcosA,
∴a•$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=2b•$\frac{{c}^{2}+{b}^{2}-{a}^{2}}{2bc}$,
化简得,3a2-3b2=c2
联立a2+b2=2c2得,a${\;}^{2}=\frac{7}{5}{b}^{2}$、${c}^{2}=\frac{6}{5}{b}^{2}$,
由余弦定理得,cosA=$\frac{{c}^{2}+{b}^{2}-{a}^{2}}{2bc}$=$\frac{\frac{6}{5}{b}^{2}+{b}^{2}-\frac{7}{5}{b}^{2}}{2b•\frac{\sqrt{6}}{\sqrt{5}}b}$=$\frac{\sqrt{30}}{15}$,
由0<A<π得,sinA=$\sqrt{1-co{s}^{2}A}=\frac{\sqrt{195}}{15}$.

点评 本题考查正弦、余弦定理,以及平方关系,考查化简、计算的能力,注意内角的范围,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设A、B是两个非空集合,定义A与B的差集为A-B={x|x∈A且x∉B}
(1)若A={1,2,3,4,5},B={2,5,6,7,8,},试求A-B,B-A.
(2)差集A-B与B-A是否一定相等?
(3)已知A={x|x>4},B={x|-6<x<6},求A-(A-B)及B-(B-A),由此你可以得到什么更一般的结论(不必说明)?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,A,B,C是一条公路上的三点,BC=2AB=2km,从这三点分别观测一塔P,从A测得塔在北偏东60°,从B测得塔在正东,从C测得塔在南偏东60°,求该塔到这条公路的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.等差数列{an}中,已知a1=-12,S13=0,使得an>0的最小正整数n为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.对于数列{xn},如果存在一个正整数m,使得对任意的n(n∈N*)都有xn+m=xn成立,那么就把这样一类数列{xn}称作周期为m的周期数列,m的最小值称作数列{xn}的最小正周期,以下简称周期.例如当xn=2时{xn}是周期为1的周期数列,当yn=sin($\frac{π}{2}$n)时{yn}是周期为4的周期数列.
(Ⅰ)设数列{an}满足an+2=an+1-an(n∈N*),a1=a,a2=b(a,b不同时为0),求证:数列{an}是周期为6的周期数列,并求数列{an}的前2013项的和S2013
(Ⅱ)设数列{an}的前n项和为Sn,且4Sn=(an+1)2
①若an>0,试判断数列{an}是否为周期数列,并说明理由;
②若anan+1<0,试判断数列{an}是否为周期数列,并说明理由;
(Ⅲ)设数列{an}满足an+2=an+1-an+1(n∈N*),a1=2,a2=3,数列{an}的前n项和为Sn,试问是否存在p,q,使对任意的n∈N*都有p≤(-1)n$\frac{S_n}{n}$≤q成立,若存在,求出p,q的取值范围;不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.有下列函数:①y=x2-x;②y=x2-|x|;③y=$\frac{{x}^{3}-x}{x-1}$;④y=5;⑤y=|3x+2|-|3x-2|,其中具有奇偶性的为(  )
A.①③⑤B.②③④C.②④⑤D.③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)是定义在足上的奇函数,它的图象关于直线x=l对称,且f(x)=x(0<x≤1).若函数 y=f(x)-$\frac{1}{x}$-a以在区间[-10,10]上有10个零点(互不相同),则实数口的取值范围是$[-\frac{1}{10},\frac{1}{10}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知圆M:x2+y2+4x-2y+3=0,直线l过点P(-3,0),圆M的圆心坐标是(-2,1);若直线l与圆M相切,则切线在y轴上的截距是-3;若直线l与圆M相交,则截得的最长弦长为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.对x、y∈R下列等式恒成立的是(  )
A.($\root{6}{x}$-$\root{6}{y}$)6=x-yB.$\root{8}{({x}^{2}+{y}^{2})^{8}}$=x2+y2
C.$\root{4}{{x}^{4}}$-$\root{4}{{y}^{4}}$=x-yD.$\root{10}{(x+y)^{10}}$=x+y

查看答案和解析>>

同步练习册答案