精英家教网 > 高中数学 > 题目详情
19.已知圆M:x2+y2+4x-2y+3=0,直线l过点P(-3,0),圆M的圆心坐标是(-2,1);若直线l与圆M相切,则切线在y轴上的截距是-3;若直线l与圆M相交,则截得的最长弦长为2$\sqrt{2}$.

分析 根据圆的标准方程即可求出圆心坐标和半径,根据直线相切即可求出切线方程,可得线在y轴上的截距.

解答 解:圆的标准方程为(x+2)2+(y-1)2=2,
则圆心坐标为(-2,1),半径R=$\sqrt{2}$,
设切线斜率为k,过P的切线方程为y=k(x+3),即kx-y+3k=0,
则圆心到直线的距离d=$\frac{|k-1|}{\sqrt{1+{k}^{2}}}$=$\sqrt{2}$,
平方得k2+2k+1=(k+1)2=0,
解得k=-1,
此时切线方程为y=-x-3,即在y轴上的截距为-3,
直线l与圆M相交,则截得的最长弦长为直径2$\sqrt{2}$.
故答案为:(-2,1);-3;2$\sqrt{2}$.

点评 本题主要考查圆的标准方程的应用以及直线和圆相切的位置关系的应用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.求函数y=-2cos2x-2sinx+3的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,a,b,c分别是角A,B,C的对边,且满足$\frac{b}{a}$+$\frac{a}{b}$=4cosC.
(Ⅰ)求$\frac{si{n}^{2}A+si{n}^{2}B}{si{n}^{2}C}$的值;
(Ⅱ)若tanA=2tanB,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.记定义在R上的函数f(x)的导函数为f′(x).如果存在x0∈[a,b],使得f(b)-f(a)=f′(x0)(b-a)成立,则称x0为函数f(x)在区间[a,b]上的“中值点”.那么函数f(x)=x+lnx在区间[e,e2]上的“中值点”为e2-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.校团委组织“中国梦,我的梦”知识演讲比赛活动,现有4名选手参加决赛,若每位选手都可以从4个备选题目中任选出一个进行演讲,则恰有一个题目没有被这4位选手选中的情况有144种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知x-3=8,那么x等于(  )
A.2B.-2C.±2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:
x24568
y3040605070
(1)求线性回归方程;
(2)预测当广告费支出7(百万元)时的销售额.
附:$\left\{\begin{array}{l}\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}\\ \hat a=\overline y-\hat b\overline x\end{array}\right.=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设U为全集,A,B是集合,若存在集合C使得A⊆C,B⊆∁UC,则下列集合中必为空集是(  )
A.A∩BB.(∁UA)∩CC.(∁UB)∩(∁UC)D.(∁UC)∩B

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.讨论函数f(x)=$\frac{ax}{{x}^{2}-1}$(a≠0)在-1<x<1上的单调性.

查看答案和解析>>

同步练习册答案