精英家教网 > 高中数学 > 题目详情
15.有下列函数:①y=x2-x;②y=x2-|x|;③y=$\frac{{x}^{3}-x}{x-1}$;④y=5;⑤y=|3x+2|-|3x-2|,其中具有奇偶性的为(  )
A.①③⑤B.②③④C.②④⑤D.③④⑤

分析 根据函数奇偶性的定义进行判断即可.

解答 解:①y=x2-x;
f(-x)=x2+x,则f(-x)≠-f(x)且f(-x)≠f(x),则①为非奇非偶函数.
②y=x2-|x|;
f(-x)=x2-|x|=f(x),则f(x)为偶函数.
③y=$\frac{{x}^{3}-x}{x-1}$;
由x-1≠0得x≠1,则函数的定义域关于原点不对称,则f(x)为非奇非偶函数.
④y=5;为偶函数.
⑤y=|3x+2|-|3x-2|,
f(-x)=|-3x+2|-|-3x-2|=|3x-2|-|3x+2|=-(|3x+2|-|3x-2|)=-f(x),
则f(x)为奇函数.
故具有奇偶性的是②④⑤,
故选:C.

点评 本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.注意要先判断函数的定义域是否关于原点对称.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.设集合A={(x,y)|y=$\sqrt{4-{x}^{2}}$},B={(x,y)|y=k(x-b)+1},若对任意0≤k≤1都有A∩B≠∅,则实数b的取值范围是1-2$\sqrt{2}$≤b≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\sqrt{x}$+1,g(x)=alnx,若在x=$\frac{1}{4}$处函数f(x)与g(x)的图象的切线平行,则实数a的值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设复数z=(1-i)n(其中i为虚数单位,n∈N*).若z∈R,则n的最小值为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,a,b,c分别是角A,B,C的对边,且满足$\frac{b}{a}$+$\frac{a}{b}$=4cosC.
(Ⅰ)求$\frac{si{n}^{2}A+si{n}^{2}B}{si{n}^{2}C}$的值;
(Ⅱ)若tanA=2tanB,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的一条渐近线与抛物线y2=x的一个交点的横坐标为x0,若x0>1,则双曲线C的离心率e的取值范围是(  )
A.(1,$\frac{\sqrt{6}}{2}$)B.($\sqrt{2}$,+∞)C.(1,$\sqrt{2}$)D.($\frac{\sqrt{6}}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.记定义在R上的函数f(x)的导函数为f′(x).如果存在x0∈[a,b],使得f(b)-f(a)=f′(x0)(b-a)成立,则称x0为函数f(x)在区间[a,b]上的“中值点”.那么函数f(x)=x+lnx在区间[e,e2]上的“中值点”为e2-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知x-3=8,那么x等于(  )
A.2B.-2C.±2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.做变速直线运动的质点的速度方程是v(t)=$\left\{\begin{array}{l}{t,0≤t≤20}\\{20,20<t≤80}\\{100-t,80<t≤100}\end{array}\right.$(单位:m/s).
(1)求该质点从t=10s到t=30s时所走过的路程;
(2)求该质点从开始运动到运动结束共走过的路程.

查看答案和解析>>

同步练习册答案