【题目】已知 是抛物线 的焦点,点 在该抛物线上且位于 轴的两侧, (其中 为坐标原点),则 面积的最小值是 .
科目:高中数学 来源: 题型:
【题目】如图,在等腰直角△ABO中,设 = , = ,| |=| |=1,C为AB上靠近A点的三等分点,过C作AB的垂线l,设P为垂线上任一点, = ,则 ( ﹣ )=( )
A.
B.﹣
C.﹣
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图, 为圆柱 的母线, 是底面圆 的直径, 是 的中点.
(Ⅰ)问: 上是否存在点 使得 平面 ?请说明理由;
(Ⅱ)在(Ⅰ)的条件下,若 平面 ,假设这个圆柱是一个大容器,有条体积可以忽略不计的小鱼能在容器的任意地方游弋,如果小鱼游到四棱锥 外会有被捕的危险,求小鱼被捕的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系 中,直线 的参数方程为 ( 为参数),直线 的参数方程为 ( 为参数),设 与 的交点为 ,当 变化时, 的轨迹为曲线 .
(1)写出 的普遍方程及参数方程;
(2)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,设曲线 的极坐标方程为 , 为曲线 上的动点,求点 到 的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥 中,底面 为直角梯形, ,且 , 平面 .
(1)求 与平面 所成角的正弦值;
(2)棱 上是否存在一点 满足 ?若存在,求 的长;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系 中,以原点 为极点,以 轴正半轴为极轴,圆 的极坐标方程为 .
(1)将圆 的极坐标方程化为直角坐标方程;
(2)过点 作斜率为1直线 与圆 交于 两点,试求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于椭圆 ,有如下性质:若点 是椭圆上的点,则椭圆在该点处的切线方程为 .利用此结论解答下列问题.
(Ⅰ)求椭圆 的标准方程;
(Ⅱ)若动点 在直线 上,经过点 的直线 与椭圆 相切,切点分别为 .求证直线 必经过一定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex-e-x(x∈R,且e为自然对数的底数).
(1)判断函数f(x)的单调性与奇偶性;
(2)是否存在实数t , 使不等式f(x-t)+f(x2-t2)≥0对一切x∈R都成立?若存在,求出t;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com