精英家教网 > 高中数学 > 题目详情

如图,ABC-A1B1C1是体积为1的棱柱,则四棱锥C-AA1B1B的体积是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:因为棱锥C-A1B1C1与棱柱同底同高,由Sh=1,知棱锥C-A1B1C1与的体积V=Sh=,由此能求出四棱锥C-AA1B1B的体积.
解答:因为棱锥C-A1B1C1与棱柱同底同高,
∵Sh=1
∴棱锥C-A1B1C1的体积V=Sh=
故四棱锥C-AA1B1B的体积=1-=
故选C.
点评:本昰考查棱柱、棱锥的体积的运算,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•惠州一模)如图,ABC-A1B1C1中,侧棱与底面垂直,AB⊥AC,AB=AC=AA1=2,点M,N分别为A1B和B1C1的中点.
(1)证明:MN∥平面A1ACC1
(2)求二面角N-MC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1).将△AEF、△CFP分别沿EF、PF折起到△A1EF和△C1FP的位置,使二面角A1-EF-B和C1-PF-B均成直二面角,连结A1B、A1P、EC1(如图2)
(1)求证:A1E⊥平面BEP;
(2)设正△ABC的边长为3,以
EB
EF
EA
为正交基底,建立空间直角坐标系.
①求点C1的坐标;
②直线EC1与平面C1PF所成角的大小;
③求二面角B-A1P-F的余弦值.
精英家教网

查看答案和解析>>

科目:高中数学 来源:惠州一模 题型:解答题

如图,ABC-A1B1C1中,侧棱与底面垂直,AB⊥AC,AB=AC=AA1=2,点M,N分别为A1B和B1C1的中点.
(1)证明:MN平面A1ACC1
(2)求二面角N-MC-A的正弦值.
精英家教网

查看答案和解析>>

科目:高中数学 来源:《立体几何》2013年广东省十二大市高三二模数学试卷汇编(理科)(解析版) 题型:解答题

如图,ABC-A1B1C1中,侧棱与底面垂直,AB⊥AC,AB=AC=AA1=2,点M,N分别为A1B和B1C1的中点.
(1)证明:MN∥平面A1ACC1
(2)求二面角N-MC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源:2013年广东省惠州市高考数学一模试卷(理科)(解析版) 题型:解答题

如图,ABC-A1B1C1中,侧棱与底面垂直,AB⊥AC,AB=AC=AA1=2,点M,N分别为A1B和B1C1的中点.
(1)证明:MN∥平面A1ACC1
(2)求二面角N-MC-A的正弦值.

查看答案和解析>>

同步练习册答案