精英家教网 > 高中数学 > 题目详情
(2007•金山区一模)定义在R上的偶函数f(x),满足f(2+x)=f(2-x),且当x∈[0,2]时,f(x)=
4-x2
,则f(2008)=
2
2
分析:①f(x)为偶函数,有f(-x)=f(x);②对任意x∈R,都有f(2+x)=f(2-x)说明有:f(4+x)=f(-x),①②结合可知f(x)是周期函数,又x∈[0,2]时,f(x)=
4-x2
,f(2008)可求.
解答:解:∵f(x)为R上的偶函数,∴f(-x)=f(x),
又f(2+x)=f(2-x),∴f(-x)=f(4+x),
∴f(x+4)=f(x),即f(x)是以4为周期的周期函数;
又x∈[0,2]时,f(x)=
4-x2

∴f(2008)=f(0)=2.
故答案为:2.
点评:本题主考查偶函数及周期性,关键在于对周期的探索,是解决本题的难点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2007•金山区一模)(1)已知平面上两定点A(-2,0)、B(2,0),且动点M的坐标满足
MA
MB
=0,求动点M的轨迹方程;
(2)若把(1)的M的轨迹图象向右平移一个单位,再向下平移一个单位,恰与直线x+ky-3=0 相切,试求实数k的值;
(3)如图1,l是经过椭圆
x2
a2
+
y2
b2
=1 (a>b>0)
长轴顶点A且与长轴垂直的直线,E、F是两个焦点,点P∈l,P不与A重合.若∠EPF=α,证明:0<α≤arctan
c
b
.类比此结论到双曲线
x2
a2
-
y2
b2
=1
,l是经过焦点F且与实轴垂直的直线,A、B是两个顶点,点P∈l,P不与F重合(如图2).若∠APB=α,试求角α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•金山区一模)已知集合P={x|x2-9<0},Q={y|y=2x,x∈Z},则P∩Q=
{-2,0,2}
{-2,0,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•金山区一模)函数y=x+
4x
,x∈[4,6]的最小值
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•金山区一模)已知直线l:(m+1)x-my+2m-
2
=0与圆C:x2+y2=2相切,且满足上述条件的直线l共有n条,则n的值为(  )

查看答案和解析>>

同步练习册答案