精英家教网 > 高中数学 > 题目详情
定义在(0,+∞)上的函数f(x)满足:
①f(10)=1,
②对任意实数b,f(xb)=bf(x).
(1)求f(1),f(
1
2
),f(
1
4
),及满足f(k-1002)=lg1002的k值;
(2)证明对任意x,y∈(0,+∞),f(xy)=f(x)+f(y).
(3)证明f(x)是(0,+∞)上的增函数.
(1)∵对任意实数b,f(xb)=bf(x),f(10)=1,
∴f(1)=f(100)=0×1=0,
f(
1
2
)=f(10lg
1
2
)=lg
1
2
×1=lg
1
2

f(
1
4
)=f[(
1
2
2]=2f(
1
2
)=2lg
1
2

因为f(k-1002)=f(10lg(k-1002))=lg(k-1002)=lg1002
∴k=2004.
(2)设x,y∈(0,+∞),
当x≠1时,
f(xy)=f(x•xlogxy
=x1+logxy
=(1+logxy)f(x)
=f(x)+logxy•f(x)
=f(x)+f(xlogxy
=f(x)+f(y).
当x=1时,因为f(1)=0也适合,
故对任意x,y∈(0,+∞),f(xy)=f(x)+f(y).
(3)因为x>1时,
f(x)=f(10lgx)=lgx•f(x)=lgx>0,
设0<x1<x2,则
x2
x1
>1,所以f(
x2
x1
)>0.
由(2)知f(x2)=f(
x2
x1
•x1)=f(
x2
x1
)+f(x1)>f(x1),
所以f(x)是(0,+∞)上的增函数
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在(0,1)上的函数f(x),对任意的m,n∈(1,+∞)且m<n时,都有f(
1
n
)-
f(
1
m
)=f(
m-n
1-mn
)
an=f(
1
n2+5n+5
)
,n∈N*,则在数列{an}中,a1+a2+…a8=(  )
A、f(
1
2
)
B、f(
1
3
)
C、f(
1
4
)
D、f(
1
5
)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在(0,1)上的函数,且满足:①对任意x∈(0,1),恒有f(x)>0;②对任意x1,x2∈(0,1),恒有
f(x1)
f(x2)
+
f(1-x1)
f(1-x2)
≤2
,则下面关于函数f(x)判断正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•顺义区二模)已知定义在区间[0,
2
]上的函数y=f(x)的图象关于直线x=
4
对称,当x
4
时,f(x)=cosx,如果关于x的方程f(x)=a有解,记所有解的和为S,则S不可能为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

填空题
(1)已知
cos2x
sin(x+
π
4
)
=
4
3
,则sin2x的值为
1
9
1
9

(2)已知定义在区间[0,
2
]
上的函数y=f(x)的图象关于直线x=
4
对称,当x≥
4
时,f(x)=cosx,如果关于x的方程f(x)=a有四个不同的解,则实数a的取值范围为
(-1,-
2
2
)
(-1,-
2
2
)


(3)设向量
a
b
c
满足
a
+
b
+
c
=
0
(
a
-
b
)⊥
c
a
b
,若|
a
|=1
,则|
a
|2+|
b
|2+|
c
|2
的值是
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖州二模)定义在(0,
π
2
)上的函数f(x),f′(x)是它的导函数,且恒有f(x)<f′(x)tanx成立,则(  )

查看答案和解析>>

同步练习册答案