精英家教网 > 高中数学 > 题目详情
已知函数y=x-4+
16
x+1
(x>-1),当x=a时,y取得最小值b,则a+b=
 
考点:基本不等式
专题:不等式的解法及应用
分析:变形利用基本不等式即可得出.
解答: 解:∵x>-1,
∴函数y=x-4+
16
x+1

=x+1+
16
x+1
-5
≥2
(x+1)•
16
x+1
-5=3,当且仅当x=3时取等号.
∴a=3=b,
∴a+b=6.
故答案为:6.
点评:本题考查了变形利用基本不等式的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知an=3n+1,n∈N*,如果执行如图的程序框图,那么输出的S等于(  )
A、17.5B、35
C、175D、350

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前n项和为Sn,向量
a
=(2,n)
b
=(n+1,Sn)
,且
a
b
,λ∈R.
(1)求数列{an}的通项公式;
(2)求{
1
anan+2
}
的前n项和Tn,不等式Tn
3
4
loga
(1-a)对任意的正整数n恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线C1的方程为
x=8+tcosα
y=16+tsinα
(t为参数,α∈[0,π)且α为常数),曲线C2的极坐标方程为ρ=6cosθ+8sinθ,当曲线C1被曲线C2截得的线段长为
2
且0<α<
π
3
时,求常数α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的图象如图所示,f′(x)是函数f(x)的导函数,且y=f(x+1)是奇函数,则下列结论中    
①f(1-x)+f(x+1)=0
②f′(x)(x-1)≥0
③f(x)(x-1)≥0
正确的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科)如图,在直角梯形ABCD中,BC⊥DC,AE⊥DC,M、N分别是AD、BE的中点,将△ADE沿AE折起(D不在平面ABC内).下列说法正确的是
 

①不论D折至何位置都有MN∥平面DEC;
②不论D折至何位置都有MN⊥AE;
③不论D折至何位置都有MN∥AB;
④在折起过程中,一定存在某个位置,使EC⊥AD;
⑤在折起过程中,一定存在某个位置,使MN∥BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

若存在实数x∈[
1
3
,2]满足2x>a-
2
x
,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(x2-x+1)10展开式中x3项的系数为(  )
A、-210B、210
C、30D、-30

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,若输入如下四个函数:①f(x)=sinx②f(x)=cosx③f(x)=e|x|④f(x)=|lnx|,则输出的函数的个数为(  )
A、0个B、1个C、2个D、3个

查看答案和解析>>

同步练习册答案