精英家教网 > 高中数学 > 题目详情

四棱锥P-ABCD的底面为菱形,且∠ABC=120°,PA⊥底面ABCD,AB=1,数学公式
E为PC的中点.
(1)求二面角E-AD-C的正切值;
(2)在线段PC上是否存在一点M,使PC⊥平面MBD成立?若存在,求出MC的长;若不存在,请说明理由.

解:(1)连AC、BD交于点O,连OE,则OE∥PA,从而OE⊥平面ABCD,
过点O作OF⊥AD于点F,连EF,则易证∠EFO就是所求二面角的平面角.
由ABCD是菱形,且∠ABC=120°,AB=1,得

∴在Rt△OEF中,有.(5分)
(2)证明:过点B作BM⊥PC于点M,连DM,
则∵△PBC≌△PDC,∴DM⊥PC,
∴PC⊥平面MBD,在△PBC中,

∴在PC上存在点M,且时,有PC⊥平面MBD.(10分)
分析:(1)连AC、BD交于点O,连OE,过点O作OF⊥AD于点F,连EF,可得∠EFO就是所求二面角的平面角,解三角形EFO,即可得到二面角E-AD-C的正切值;
(2)过点B作BM⊥PC于点M,连DM,可得△PBC≌△PDC,进而得到DM⊥PC,BM⊥PC,由线面垂直的判定定理,即可得到PC⊥平面MBD.
点评:本题考查的知识点是二面角的平面角及求法,直线与平面垂直的判定,其中(1)的关键是求出二面角的平面角,(2)的关键是证明DM⊥PC,BM⊥PC.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥P-ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且PA=2,E是PA的中点.
(Ⅰ)求四棱锥P-ABCD的体积;
(Ⅱ)求证:PC∥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,四棱锥P-ABCD的底面是边长为a的正方形,侧棱PA⊥底面ABCD,侧面PBC内有BE⊥PC于E,且BE=
6
3
a,试在AB上找一点F,使EF∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD是正方形,O是该正方形的中心,P是平面ABCD外一点,PO⊥底面ABCD,E是PC的中点.求证:
(1)PA∥平面BDE;
(2)平面EBD⊥平面PAC;
(3)若PA=AB=4,求四棱锥P-ABCD的全面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

正四棱锥P-ABCD的高为PO,若Q为CD中点,且
OQ
=
PQ
+x
PC
+y
PA
(x,y∈R)
则x+y=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知四棱锥P-ABCD的三视图如图所示,则这个四棱锥的体积为(  )
A、
1
3
B、1
C、
2
3
D、
4
3

查看答案和解析>>

同步练习册答案