精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1=5,anan+1=2n,则=( )
A.2
B.4
C.5
D.
【答案】分析:由a1=1,anan+1=2n,令n=1,求得a2的值,anan+1=2n,得anan-1=2n-1,两式相比,即得=2,从而求得数列{an}的第九项和第十项,最终求得结果.
解答:解:∵anan+1=2n
∴anan-1=2n-1
=2,
∴数列{an}的奇数项成等比数列,偶数项成等比数列;
∴a3=5×2=10,a7=5×23=40,故
故答案为 B
点评:考查由递推公式求数列中的指定项,解决方法,令n取特殊值(1,2,3,…)即可求得,体现了分类讨论的思想方法,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案