精英家教网 > 高中数学 > 题目详情
如图,在三棱锥P-ABC中, AB="AC=4," D、E、F分别为PA、PC、BC的中点, BE="3," 平面PBC⊥平面ABC, BE⊥DF.

(Ⅰ)求证:BE⊥平面PAF;
(Ⅱ)求直线AB与平面PAF所成的角.
(1)要证明线面垂直关键是对于AF⊥BC垂直的证明,以及平面PBC⊥平面ABC的证明,来得到。
(2)AB与平面PAF所成的角为300.

试题分析:解:(Ⅰ)证明:连结AF, ∵  AB="AC," F为BC的中点,
∴  AF⊥BC, ………………( 1 分)
又平面PBC⊥平面ABC, 且平面PBC平面ABC于BC,
∴  AF⊥平面PBC. (  2 分)
又∵  BE平面PBC,
∴  AF⊥BE. ( 5 分)
又∵BE⊥DF, DF,
∴  BE⊥平面PAF. ( 5 分)
(Ⅱ)设BEPF="H," 连AH, 由(1)可知AH为AB在平面PAF上的射影,
所以∠HAB为直线AB与平面PAF所成的角.         (  7分)
∵ E 、F分别为PC、BC的中点,
∴H为△PBC的重心, 又BE=3,
∴BH=                        (  9 分)
在Rt△ABH中,              (  10 分)
∴AB与平面PAF所成的角为300.                  (12分)
点评:解决的关键是利用空间中点线面的位置关系来得到证明,以及结合线面角的定义来的得到求解,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,在三棱锥中,两两垂直,且.设点为底面内一点,定义,其中分别为三棱锥的体积.若,且恒成立,则正实数的取值范围是___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,S是正方形ABCD所在平面外一点,且SD⊥面ABCD ,AB=1,SB=.

(1)求证:BCSC;
(2) 设M为棱SA中点,求异面直线DMSB所成角的大小
(3) 求面ASD与面BSC所成二面角的大小;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面为直角梯形,且,侧面底面. 若.

(Ⅰ)求证:平面
(Ⅱ)侧棱上是否存在点,使得平面?若存在,指出点 的位置并证明,若不存在,请说明理由;
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB, PC的中点

(1)求证:EF∥平面PAD;
(2)求证:EF⊥CD;    
(3)若ÐPDA=45°,求EF与平面ABCD所成的角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱中,的中点,是线段上的动点(与端点不重合),且.

(1)若,求证:;
(2)若直线与平面所成角的大小为,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:在多面体EF-ABCD中,四边形ABCD是平行四边形,△EAD为正三角形,且平面EAD平面ABCD,EF∥AB, AB=2EF=2AD=4,.

(Ⅰ)求证:BFAD;
(Ⅱ)求直线BD与平面BCF所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,⊥平面的中点, 的中点,底面是菱形,对角线交于点

求证:(1)平面平面
(2)平面⊥平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)
如图,在中,边上的高,,沿翻折,使得得几何体

(Ⅰ)求证:
(Ⅱ)求点D到面ABC的距离。

查看答案和解析>>

同步练习册答案