精英家教网 > 高中数学 > 题目详情

甲、乙两名篮球运动员轮流投篮直至某人投中为止,计每次投篮甲投中的概率为0.4,乙投中的概率为0.6,而且不受其他投篮结果的影响.设甲投篮的次数为ξ,若甲先投,则P(ξ=k)等于


  1. A.
    0.6k-1×0.4
  2. B.
    0.24k-1×0.4
  3. C.
    0.4k-1×0.6
  4. D.
    0.6k-1×0.24
B
分析:由题意知甲和乙投篮不受其他投篮结果的影响,本题是一个相互独立事件同时发生的概率,甲投篮的次数为ξ,甲先投,则ξ=k表示甲第K次甲投中篮球,而乙前k-1次没有投中,甲k-1也没有投中,根据公式写出结果.
解答:∵甲和乙投篮不受其他投篮结果的影响,
∴本题是一个相互独立事件同时发生的概率,
∵每次投篮甲投中的概率为0.4,乙投中的概率为0.6,
甲投篮的次数为ξ,甲先投,则ξ=k表示甲第K次投中篮球,而乙前k-1次没有投中,
根据相互独立事件同时发生的概率得到0.4k-1×0.6k-1×0.4=0.24k-1×0.4;
故选B.
点评:本题考查相互独立事件同时发生的概率,是一个基础题,本题最大的障碍是理解ξ=k的意义,相互独立事件是指,两事件发生的概率互不影响,注意应用相互独立事件同时发生的概率公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲、乙两名篮球运动员在四场比赛中的得分数据以茎叶图记录如下:
(Ⅰ)求乙球员得分的平均数和方差;
(Ⅱ)分别从两人得分中随机选取一场的得分,求得分和Y的分布列和数学期望.
(注:方差s2=
1
n
[(x1-
.
x
2+(x2-
.
x
2+…+(xn-
.
x
2]其中
.
x
为x1,x2,…xn的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:

2012年的NBA全明星赛,于美国当地时间2012年2月26日在佛罗里达州奧兰多市举行.如图是参加此次比赛的甲、乙两名篮球运动员以往几场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数之和是
64
64

查看答案和解析>>

科目:高中数学 来源: 题型:

某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员得分的平均数分别为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网某赛季,甲、乙两名篮球运动员都参加了10场比赛,比赛得分情况记录如下(单位:分):精英家教网
甲:37,21,31,20,29,19,32,23,25,33
乙:10,30,47,27,46,14,26,10,44,46
(Ⅰ)根据得分情况记录,作出两名篮球运动员得分的茎叶图,并根据茎叶图,对甲、乙两运动员得分作比较,写出两个统计结论;
(Ⅱ)设甲篮球运动员10场比赛得分平均值
.
x
,将10场比赛得分xi依次输入如图所示的程序框图进行运算,问输出的S大小为多少?并说明S的统计学意义;
(Ⅲ)如果从甲、乙两位运动员的10场得分中,各随机抽取一场不小于30分的得分,求甲的得分大于乙的得分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•厦门模拟)某赛季甲、乙两名篮球运动员各6场比赛得分情况用茎叶图记录,下列四个结论中,不正确的是(  )

查看答案和解析>>

同步练习册答案