精英家教网 > 高中数学 > 题目详情
7.下列函数①f(x)=x2(x>0);②f(x)=x3(x>0);③f(x)=$\frac{1}{x}$(x>0);④f(x)=x${\;}^{\frac{1}{3}}$(x>0),其中对任意x1,x2∈(0,+∞),满足f($\frac{{x}_{1}+{x}_{2}}{2}$)≥$\frac{1}{2}$[f(x1)+f(x2)]的函数序号是④.

分析 对任意x1,x2∈(0,+∞),满足f($\frac{{x}_{1}+{x}_{2}}{2}$)≥$\frac{1}{2}$[f(x1)+f(x2)]的函数恒成立,则函数在为(0,+∞)上凸函数,对四个函数进行分析,可得结论.

解答 解:对任意x1,x2∈(0,+∞),满足f($\frac{{x}_{1}+{x}_{2}}{2}$)≥$\frac{1}{2}$[f(x1)+f(x2)]的函数恒成立,则函数在为(0,+∞)上凸函数,
①f(x)=x2(x>0)下凹函数,不满足;
②f(x)=x3(x>0)下凹函数,不满足;
③f(x)=$\frac{1}{x}$(x>0);下凹函数,不满足;
④f(x)=x${\;}^{\frac{1}{3}}$(x>0),满足条件.
故答案为:④.

点评 本题考查命题的真假判断与应用,考查函数的性质,任意x1,x2∈(0,+∞),满足f($\frac{{x}_{1}+{x}_{2}}{2}$)≥$\frac{1}{2}$[f(x1)+f(x2)]的函数恒成立,则函数在为(0,+∞)上凸函数是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若$\frac{cosθ}{\sqrt{1+ta{n}^{2}θ}}$+$\frac{sinθ}{\sqrt{1+\frac{1}{ta{n}^{2}θ}}}$=-1,则θ(  )
A.在第二象限B.在第三象限C.在第四象限D.在第一象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.判断下列函数的奇偶性:
(1)f(x)=|x+5|-|x-5|;
(2)f(x)=$\frac{1}{{x}^{2}+x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax+lnx,判断命题“若f(2)≥f(e),则a<0”的真假.并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设命题p:存在x0∈(-2,+∞),使得6+|x0|=5.
命题q:对任意x∈(0,+∞),($\frac{1}{x}$+x)($\frac{4}{x}+x$)≥9恒成立.
(1)写出命题p的否定;
(2)判断命题非p,p或q,p且q的真假,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.经过原点和直线3x+2y-6=0与直线x-2y-2=0的交点的直线方程是y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知m∈R,命题p:$\frac{{x}^{2}}{2-m}$+$\frac{{y}^{2}}{m+4}$=1表示双曲线;命题q:$\frac{{x}^{2}}{3-m}$+$\frac{{y}^{2}}{m+5}$=1表示点在x轴上的椭圆.
(1)若p是真命题,求实数m的取值范围;
(2)若“非p”与“p或q”都是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=3x+4x,函数g(x)=5x,试判断两函数图象的公共点个数及公共点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合A={x|2x+10=0},则A=(  )
A.A=5B.A=-5C.A={5}D.A={-5}

查看答案和解析>>

同步练习册答案