精英家教网 > 高中数学 > 题目详情
如图,在边长为1的等边三角形中,分别是边上的点,的中点,交于点,将沿折起,得到如图所示的三棱锥,其中

(1) 证明://平面
(2) 证明:平面
(3) 当时,求三棱锥的体积
(1)见解析 (2) 见解析(3)
(1)在等边三角形中, 
,在折叠后的三棱锥
也成立, ,平面
平面平面
(2)在等边三角形中,的中点,所以①,.
 在三棱锥中,

(3)由(1)可知,结合(2)可得.

解决折叠问题,需注意一下两点:1.一定要关注“变量”和“不变量”在证明和计算中的应用:折叠时位于棱同侧的位置关系和数量关系不变;位于棱两侧的位置关系与数量关系变;2.折前折后的图形结合起来使用.本题第一问关键是利用相似比在折叠完以后没有变化,达到证明目的;第二问中借助勾股定理和不变的垂直关系,借助线面垂直的判断定理证明;第三问利用体积转化,充分借助第一问的平行关系和第二问的垂直关系进行求解.
【考点定位】线面平行于垂直、几何体的体积问题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,平面凸多面体的体积为的中点.
(Ⅰ)求证:平面
(Ⅱ)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过圆锥高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正四棱锥则的底面边长为,高,则过点的球的半径为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设正四棱锥的侧面积为,若

(1)求四棱锥的体积;
(2)求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四边形ABCD是矩形,,F为CE上的点,且BF平面ACE,AC与BD交于点G

(1)求证:AE平面BCE
(2)求证:AE//平面BFD

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正四棱锥中,,点M,N分别在PA,BD上,且

(Ⅰ)求异面直线MN与AD所成角;
(Ⅱ)求证:∥平面PBC;
(Ⅲ)求MN与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知所在的平面,是⊙的直径,,C是⊙上一点,且

(1) 求证:
(2) 求证:
(3)当时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形中,为正三角形,交于点.将沿边折起,使点至点,已知与平面所成的角为,且点在平面内的射影落在内.

(Ⅰ)求证:平面
(Ⅱ)若已知二面角的余弦值为,求的大小.

查看答案和解析>>

同步练习册答案