【题目】已知抛物线,为其焦点,椭圆,,为其左右焦点,离心率,过作轴的平行线交椭圆于两点,.
(1)求椭圆的标准方程;
(2)过抛物线上一点作切线交椭圆于两点,设与轴的交点为,的中点为,的中垂线交轴为,,的面积分别记为,,若,且点在第一象限.求点的坐标.
科目:高中数学 来源: 题型:
【题目】为了节能减排,发展低碳经济,我国政府从2001年起就通过相关扶植政策推动新能源汽车产业发展.下面的图表反映了该产业发展的相关信息:
2019年2月份新能源汽车销量结构图根据上述图表信息,下列结论错误的是( )
A.2018年4月份我国新能源汽车的销量高于产量
B.2017年3月份我国新能源汽车的产量不超过3.4万辆
C.2019年2月份我国插电式混合动力汽车的销量低于1万辆
D.2017年我国新能源汽车总销量超过70万辆
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定椭圆:,称圆心在原点,半径为的圆是椭圆的“伴椭圆”,若椭圆的一个焦点为,其短轴上一个端点到的距离为.
(1)求椭圆的方程;
(2)过点作椭圆的“伴随圆”的动弦,过点、分别作“伴随圆”的切线,设两切线交于点,证明:点的轨迹是直线,并写出该直线的方程;
(3)设点是椭圆的“伴随圆”上的一个动点,过点作椭圆的切线、,试判断直线、是否垂直?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校共有学生2000人,其中男生1100人,女生900人为了调查该校学生每周平均课外阅读时间,采用分层抽样的方法收集该校100名学生每周平均课外阅读时间(单位:小时)
(1)应抽查男生与女生各多少人?
(2)如图,根据收集100人的样本数据,得到学生每周平均课外阅读时间的频率分布直方图,其中样本数据分组区间为.若在样本数据中有38名女学生平均每周课外阅读时间超过2小时,请完成每周平均课外阅读时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均课外阅读时间与性别有关”.
男生 | 女生 | 总计 | |
每周平均课外阅读时间不超过2小时 | |||
每周平均课外阅读时间超过2小时 | |||
总计 |
附:
0.100 | 0.050 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,两种坐标系取相同的单位长度.已知曲线,过点的直线的参数方程为.直线与曲线分别交于、.
(1)求的取值范围;
(2)若、、成等比数列,求实数的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com