精英家教网 > 高中数学 > 题目详情
8.已知等差数列{an}满足:a1=2,且a22=a1a5
(1)求数列{an}的通项公式;
(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由.

分析 (1)设出数列的公差,利用a22=a1a5建立等式求得d,则数列的通项公式可得.
(2)利用(1)中数列的通项公式,表示出Sn根据Sn>60n+800,解不等式根据不等式的解集来判断.

解答 解:(1)设等差数列{an}的公差为d,依题意,2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),
化简得d2-4d=0,
解得d=0或d=4.
当d=0时,an=2;
当d=4时,an=2+(n-1)•4=4n-2,
从而得数列{an}的通项公式为an=2或an=4a-2.
(2)当an=2时,Sn=2n.显然2n<60n+800,
此时不存在正整数n,使得Sn>60n+800成立.
当an=4n-2时,Sn=$\frac{n[2+(4n-2)]}{2}$=2n2
令2n2>60n+800,
即n2-30n-400>0,
解得n>40或n<-10(舍去),
此时存在正整数n,使得Sn>60n+800成立,n的最小值为41.
综上,当an=2时,不存在满足题意的n;
当an=4n-2时,存在满足题意的n,其最小值为41.

点评 本题主要考查了等差数列和等比数列的性质.要求学生对等差数列和等比数列的通项公式,求和公式熟练记忆.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=cosx•cos(x-\frac{π}{3})$.
(1)求函数f(x)的单调增区间;
(2)若直线y=a与函数f(x)的图象无公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+bx+c
(1)若f(x)在(-∞,+∞)上是增函数,求b的取值范围
(2)若f(x)在x=1处取得极值,且x∈[-1,2]时,f(x)<c2恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为$2\sqrt{3}$,离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)过点P(0,3)的直线m与椭圆C交于A,B两点,若A是PB的中点,求直线m的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,设E为PD的中点.
(1)证明:PB∥平面AEC;
(2)设异面直线BP与CD所成角为45°,AP=1,AD=$\sqrt{3}$,求三棱锥E-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知2弧度的圆心角所对的半径长为2,那么这个圆心角所对的弧长是(  )
A.2B.sin2C.$\frac{2}{sin1}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若α=3,则α的终边落在第二象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若F1,F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点,过点F1作以F2为圆心|OF2|为半径的圆的切线,Q为切点,若切线段F1Q被双曲线的一条渐近线平分,则双曲线的离心率为(  )
A.2B.$\frac{\sqrt{5}}{2}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a>0,不等式$x+\frac{1}{x}≥2,x+\frac{4}{x^2}≥3,…$,可推广为$x+\frac{a}{x^n}≥n+1$,则a=nn

查看答案和解析>>

同步练习册答案