(本小题满分14分)
设函数
定义在
上,
,导函数![]()
(Ⅰ)求
的单调区间和最小值;
(Ⅱ)讨论
与
的大小关系;
(Ⅲ)是否存在
,使得
对任意
成立?若存在,求出
的取值范围;若不存在,请说明理由.
解 (Ⅰ)由题设易知
,
,
![]()
,令
得
,
当
时,
,故(0,1)是
的单调减区间,
当
时,
,故
是
的单调增区间,
因此,
是
的唯一极值点,且为极小值点,从而是最小值点,所以最小值为
.
(Ⅱ)
,
设
,则
,
当
时,
,即
,
当
时
,
,
因此,
在
内单调递减,
当
时,
,即
,
当
时,
,即
.
(Ⅲ)满足条件的
不存在.
证明如下:
证法一 假设存在
,使
对任意
成立,
即对任意
,有
,(*)
但对上述
,取
时,有
,这与(*)左边不等式矛盾,
因此,不存在
,使
对任意
成立。
证法二 假设存在
,使
对任意的
成立。
由(Ⅰ)知,
的最小值为
。
又![]()
,而
时,
的值域为
,
∴
时,
的值域为
,
从而可取一个
,使
,
即![]()
![]()
,故 ![]()
,与假设矛盾。
∴ 不存在
,使
对任意
成立。
科目:高中数学 来源: 题型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为
(a>b>0),曲线C2的方程为y=
,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知
=2,点(
)在函数
的图像上,其中
=
.
(1)证明:数列
}是等比数列;
(2)设
,求
及数列{
}的通项公式;
(3)记
,求数列{
}的前n项和
,并证明
.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第
天(
)的销售价格(单位:元)为
,第
天的销售量为
,已知该商品成本为每件25元.
(Ⅰ)写出销售额
关于第
天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知
的图像在点
处的切线与直线
平行.
⑴ 求
,
满足的关系式;
⑵ 若
上恒成立,求
的取值范围;
⑶ 证明:
(
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com