已知正数
,对任意
且
不等式
恒成立,则实数
的取值范围是
.
科目:高中数学 来源: 题型:
| 1 |
| 3 |
| x | 2 k |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 1 | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年浦东新区模拟) 已知等差数列
,
是
的前
项和,且
.
(1)求
的通项公式;
(2)判别方程
是否有解,说明理由;
(3)设
,
是
的前n项和,是否存在正数
,对任意正整数
,使
恒成立?若存在,求
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
.设函数y=f(x)的定义域为(0,+∞),且对任意的正实数x, y,均有
f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且当x>1时,f(x)>0。
(1)求f(1), f(
)的值;
(2)试判断y=f(x)在(0,+∞)上的单调性,并加以证明;
(3)一个各项均为正数的数列{a??n}满足f(Sn)=f(an)+f(an+1)-1,n∈N*,其中Sn是数列{an}的前n项和,求数列{an}的通项公式;
(4)在(3)的条件下,是否存在正数M,使2n·a1·a2…an≥M·
.(2a1-1)·(2a2-1)…(2an-1)对于一切n∈N*均成立?若存在,求出M的范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市高三赴蚌埠二中交流数学试卷(解析版) 题型:解答题
已知等差数列
,
是
的前
项和,且
.
(1)求
的通项公式;
(2)设
,
是
的前n项和,是否存在正数
,对任意正整数
,不等式
恒成立?若存在,求
的取值范围;若不存在,说明理由.
(3)判断方程
是否有解,说明理由;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com