精英家教网 > 高中数学 > 题目详情
“a=”是“对任意的正数x,2x+的”( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【答案】分析:根据基本不等式,我们可以判断出“a=”⇒“对任意的正数x,2x+”与“对任意的正数x,2x+”⇒“a=”真假,进而根据充要条件的定义,即可得到结论.
解答:解:当“a=”时,由基本不等式可得:
“对任意的正数x,2x+”一定成立,
即“a=”⇒“对任意的正数x,2x+”为真命题;
而“对任意的正数x,2x+的”时,可得“a≥
即“对任意的正数x,2x+”⇒“a=”为假命题;
故“a=”是“对任意的正数x,2x+的”充分不必要条件
故选A
点评:本题考查的知识点是必要条件、充分条件与充要条件的判断,其中根据基本不等式,判断“a=”⇒“对任意的正数x,2x+”与“对任意的正数x,2x+”⇒“a=”真假,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、已知f(x)是定义在[a,b]上的函数,其图象是一条连续的曲线,且满足下列条件:
①f(x)的值域为G,且G⊆[a,b];
②对任意的x,y∈[a,b],都有|f(x)-f(y)|<|x-y|.
那么,关于x的方程f(x)=x在区间[a,b]上根的情况是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2x,g(x)=ax+2(a>0)对任意的x1∈[-1,2]都存在x0∈[-1,2],使得g(x1)=f(x0)则实数a的取值范围是
(0,
1
2
]
(0,
1
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题,其中正确的命题的个数为(  )
①命题“存在x0∈R,2x0≤0”的否定是“.对任意的x∈R,2x>0”;
②函数y=tan
x
2
的对称中心为(kπ,0),k∈Z;
log2sin
π
12
+log2cos
π
12
=-2;
④[cos(3-2x)]′=-2sin(3-2x).

查看答案和解析>>

科目:高中数学 来源: 题型:

定义平面向量之间的一种运算“*”如下,对任意的
a
=(m,n)
b
=(p,q)
,令
a
*
b
=mq-np
,下面说法:
a
*
b
=
b
*
a

②若
a
b
共线,则
a
*
b
=0

③对任意的λ∈R,有
a
)*
b
=λ(
a
*
b
)

(
a
*
b
)2+(
a
b
)2=|
a
|2|
b
|2
中,正确的是
②③④
②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx

(Ⅰ)若函数f(x)在[1,+∞)上是增函数,求正实数a的取值范围;
(Ⅱ)当a=1时,求函数f(x)在[
1
2
,2]
上的最大值和最小值;
(Ⅲ)当a=1时,对任意的正整数n>1,求证:f(
n
n-1
)>0

查看答案和解析>>

同步练习册答案