精英家教网 > 高中数学 > 题目详情

解不等式:(x-1)(x+2)(x-3)>0;

答案:
解析:

  思路与技巧:利用降维思想求解.

  解答一:由原不等式(x-1)(x+2)(x-3)>0可知三个因式x-1,x+2,x-3的符号情况是①三个全正;②一正两负.于是原不等式转化为下面四个等价的不等式组

  

  评析:本题转化为四个等价的一次不等式组,计算方便.但如果次数较高,相应的不等式组会更多,因此适用于次数不高的不等式.

  思路与技巧:用表解法求解.

  解答二:用表解法求解高次不等式的步骤是:

  ①检查各因式中x系数的符号均正;

  ②求得相应方程的根为:-2,1,3;(依次由小到大)

  ③列表如下:

  ④由上表可知,原不等式的解集为{x|-2<x<1或x>3}.

  评析:此法叫表解法,解题步骤是

  ①将不等式化为(x-x1)(x-x2)…(x-xn)>0(<0)形式(各项x系数的符号化“+”),令(x-x1)(x-x2)…(x-xn)=0,求出各根,不妨称之为分界点,一个分界点把(实数)数轴分成两部分,n个分界点把数轴分成n+1部分;

  ②按各根把实数分成的n+1部分,由小到大横向排列,相应各因式纵向排列(由对应较小根的因式开始依次自上而下排列);

  ③计算各区间内各因式的符号,下面是乘积的符号;

  ④看下面积的符号写出不等式的解集.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网A.选修4-1:几何证明选讲
如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2 ).圆O1的弦AB交圆O2于点C ( O1不在AB上).求证:AB:AC为定值.
B.选修4-2:矩阵与变换
已知矩阵A=
11
21
,向量β=
1
2
.求向量
α
,使得A2
α
=
β

C.选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,求过椭圆
x=5cosφ
y=3sinφ
(φ为参数)的右焦点,且与直线
x=4-2t
y=3-t
(t为参数)平行的直线的普通方程.
D.选修4-5:不等式选讲(本小题满分10分)
解不等式:x+|2x-1|<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:x+|2x-1|<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式组
x-2
x-1
<1
-x2+x+2<0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax+1,(0<x<a).
3-
x
a
+1,(a≤x<1)
满足f(a2)=
28
27

(Ⅰ)求常数a的值;
(Ⅱ)解不等式f(x)>1+
3
27

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式组
x+3
x+1
≤2
x2-6x-8<0

查看答案和解析>>

同步练习册答案