精英家教网 > 高中数学 > 题目详情

数学公式,a1=1,则a10=________.


分析:题意可得,从而考虑利用叠加法求解数列的通项即可
解答:∵




把以上9个式子相加可得,

故答案为:
点评:本题主要考查了利用数列的递推公式求解数列的通项公式,解题的关键是灵活利用叠加法,叠加使要注意所写出的式子得个数是9个,而不是10个.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知{an}是公比为2的等比数列,若a3-a1=6,则a1=
2
2
1
a
2
1
+
1
a
2
2
+…+
1
a
2
n
=
1
3
(1-4-n)
1
3
(1-4-n)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:an-an-1=(-
a1
2
)•(-
1
2
)n-2(n∈N*,n≥2).若
lim
n→∞
an=1,则a1等于
(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是公比为q的等比数列,给出下列命题
①数列{an}的前n项和Sn=
a1-an+11-q

②若q>1,则数列{an}是递增数列;
③若a1<a2<a3,则数列{an}是递增数列;
④若等比数列{an}前n项和Sn=3n+a,则a=-1.
其中正确的是
③④
③④
 (请将你认为正确的命题的序号都写上)

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A1,A2满足A1∪A2=A,则称(A1,A2)为集合A的一种分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,则集合A={1,2,3}的不同分拆种数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A1,A2满足A1∪A2=A,则称(A1,A2)为集合A的一种分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,
(1)集合A={a,b}的不同分拆种数为多少?
(2)集合A={a,b,c}的不同分拆种数为多少?
(3)由上述两题归纳一般的情形:集合A={a1,a2,a3,…an}的不同分拆种数为多少?(不必证明)

查看答案和解析>>

同步练习册答案