精英家教网 > 高中数学 > 题目详情

双曲线数学公式的两个焦点为F1、F2,P为双曲线上一点,|OP|<5,|PF1|、|F1F2|、|PF2|成等比数列,则b2=________.

1
分析:通过等比数列双曲线的定义,余弦定理推出:|OP|2=20+3b2.利用|OP|<5,b∈N,求出b的值.
解答:由题意,|PF1|、|F1F2|、|PF2|成等比数列可知,|F1F2|2=|PF1||PF2|,
即4c2=|PF1||PF2|,
由双曲线的定义可知|PF1|-|PF2|=4,即|PF1|2+|PF2|2-2|PF1||PF2|=16,
可得|PF1|2+|PF2|2-8c2=16…①
设∠POF1=θ,则∠POF2=π-θ,
由余弦定理可得:|PF2|2=c2+|OP|2-2|OF2||OP|cos(π-θ),|PF1|2=c2+|OP|2-2|OF1||OP|cosθ,
|PF2|2+PF1|2=2c2+2|OP|2,…②,
由①②化简得:|OP|2=8+3c2=20+3b2
因为|OP|<5,b∈N,所以20+3b2<25.
所以b=1.
故答案为:1.
点评:本题考查双曲线的定义,余弦定理以及等比数列的应用,是有难度的综合问题,考查分析问题解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
-1(a>0,b>0)
的两个焦点为F:(-2,0),F:(2,0),点P(3,
7
)

的曲线C上.
(Ⅰ)求双曲线C的方程;
(Ⅱ)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为2
2
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:2009年高考数学第二轮复习热点专题测试卷:平面解析几何(含详解) 题型:044

已知双曲线的两个焦点为F:(-2,0),F:(2,0),点P(3,)的曲线C上.

(Ⅰ)求双曲线C的方程;

(Ⅱ)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点EF,若△OEF的面积为求直线l的方程

查看答案和解析>>

科目:高中数学 来源:2009年高考数学第二轮执点专题测试、平面解析几何(含详解) 题型:044

已知双曲线的两个焦点为F:(-2,0),F:(2,0),点P(3,)的曲线C上.

(Ⅰ)求双曲线C的方程;

(Ⅱ)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点EF,若△OEF的面积为求直线l的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线的两个焦点为F­1,F­2 ,点P在双曲线上,△的面积为,则                              

A.2                       B.                        C.-2                   D.  

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线的两个焦点为F­1,F­2 ,点P在双曲线上,的面积为,则                     

A.2                   B.               C.-2               D.-

查看答案和解析>>

同步练习册答案