精英家教网 > 高中数学 > 题目详情

若集合A={x|-3≤x<2,x∈Z},B={x||x+1|<3,x∈N},则A∪B中元素的个数是


  1. A.
    5
  2. B.
    6
  3. C.
    7
  4. D.
    8
A
分析:用列举法表示集合A,列举法表示集合B,即可求解A∪B中元素的个数.
解答:集合A={x|-3≤x<2,x∈Z}={-3,-2,-1,0,1},
B={x||x+1|<3,x∈N}={0,1},
A∪B={-3,-2,-1,0,1}
共有5个元素.
故选A.
点评:本题考查列举法表示集合的基本方法,集合的基本运算,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

记U=R,若集合A={x|3≤x<8},B={x|2<x≤6},则
(1)求A∩B,A∪B,?UA;
(2)若集合C={x|x≥a},A⊆C,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},则
(1)求A∩B,A∪B,(?UA)∩(?UB);
(2)若集合C={x|x>a},B⊆C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

全集U=R,若集合A={x|3≤x<8},B={x|2<x≤6},则(结果用区间表示)
(1)求A∩B,A∪B,(CUA)∩(CUB);
(2)若集合C={x|x>a},A⊆C,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},求
(Ⅰ)A∩B,A∪B,(CUA)∩(CUB);
(Ⅱ)若C={x|a2-1≤x<5a}且A=C,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},则
(1)求A∩B,A∪B,(?UA)∩(?UB);
(2)若集合C={x|x>a},若A∩C=A,求a的取值范.

查看答案和解析>>

同步练习册答案