精英家教网 > 高中数学 > 题目详情
设二次函数f(x)=mx2+nx+t的图象过原点,g(x)=ax3+bx-3(x>0),f(x),g(x)的导函数分别为f′(x),g′(x),且f′(0)=0,f′(-1)=-2,f(1)=g(1),f′(1)=g′(1),
(1)求函数f(x),g(x)的解析式;
(2)求F(x)=f(x)-g(x)的极小值;
(3)是否存在实常数k和m,使得f(x)≥kx+m和g(x)≤kx+m?若存在,求出k和m的值;若不存在,说明理由。
解:(1)由已知得t=0,f′(x)=2mx+n,
则f′(0)=n=0,f′(-1)=-2m+n=-2,
从而n=0,m=1,
∴f(x)=x2
由f(1)=g(1),f′(1)=g′(1),得a+b-3=1,3a+b=2,
解得a=-1,b=5,

(2)
求导数得
∴F(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
从而F(x)的极小值为F(1)=0.
(3)因f(x)与g(x)有一个公共点(1,1),而函数f(x)在点(1,1)的切线方程为y=2x-1,
下面验证都成立即可.
,知f(x)≥2x-1恒成立;
设h(x)=-x3+5x-3-(2x-1),即h(x)=-x3+3x-2(x>0),
求导数得h′(x)=-3x2+3=-3(x-1)(x+1)(x>0),
∴h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,
所以h(x)= -x3+5x-3-(2x-1)的最大值为h(1)=0,
所以-x3+5x-3≤2x-1恒成立,
故存在这样的实常数k和m,且k=2,m=-1。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设二次函数f(x)=x2+x+c(c>
1
8
)
的图象与x轴的左右两个交点的横坐标分别为x1,x2,则x2-x1的取值范围为(  )
A、(0,1)
B、(0,
2
2
)
C、(
1
2
2
2
)
D、(
2
2
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=(k-4)x2+kx
 &(k∈R)
,对任意实数x,有f(x)≤6x+2恒成立;数列{an}满足an+1=f(an).
(1)求函数f(x)的解析式和值域;
(2)试写出一个区间(a,b),使得当a1∈(a,b)时,数列{an}在这个区间上是递增数列,并说明理由;
(3)已知,是否存在非零整数λ,使得对任意n∈N*,都有log3(
1
1
2
-a1
)+log3(
1
1
2
-a2
)+…+log3(
1
1
2
-an
)>(-1)n-12λ+nlog32-1
-1+(-1)n-12λ+nlog32恒成立,若存在,求之;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2014•长宁区一模)设二次函数f(x)=(k-4)x2+kx
 (k∈R)
,对任意实数x,有f(x)≤6x+2恒成立;数列{an}满足an+1=f(an).
(1)求函数f(x)的解析式和值域;
(2)证明:当an∈(0,
1
2
)
时,数列{an}在该区间上是递增数列;
(3)已知a1=
1
3
,是否存在非零整数λ,使得对任意n∈N*,都有log3(
1
1
2
-a1
)+log3(
1
1
2
-a2
)+…+log3(
1
1
2
-an
)>-
1+(-1)n-12λ+nlog32恒成立,若存在,求之;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=(k-4)x2+kx
 &(k∈R)
,对任意实数x,f(x)≤6x+2恒成立;正数数列{an}满足an+1=f(an).
(1)求函数f(x)的解析式和值域;
(2)试写出一个区间(a,b),使得当an∈(a,b)时,数列{an}在这个区间上是递增数列,并说明理由;
(3)若已知,求证:数列{lg(
1
2
-an)+lg2}
是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=x2x+a(a>0),若f(m)<0,则f(m-1)的值为(    )

A.正数          B.负数     C.非负数              D.正数、负数和零都有可能

查看答案和解析>>

同步练习册答案