【题目】已知向量 =(sin(π+ωx),2cosωx), =(2 sin( +ωx),cosωx),(ω>0),函数f(x)= ,其图象上相邻的两个最低点之间的距离为π.
(Ⅰ)求函数f(x)的对称中心;
(Ⅱ)在锐角△ABC中,角A、B、C的对边分别为a、b、c,tanB= ,求f(A)的取值范围.
【答案】解:(Ⅰ)由题意,向量 =(sin(π+ωx),2cosωx), =(2 sin( +ωx),cosωx),(ω>0),
函数f(x)= =sin(π+ωx)(2 sin( +ωx)+2cosωxcosωx=2cos2ωx﹣ sinωxcosωx
=1+cos2ωx﹣ sin2ωx=2cos(2ωx+ )+1,
∵图象上相邻的两个最低点之间的距离为π.
∴周期T=π,即 ,
∴ω=1,
可得f(x)=2cos(2x+ )+1,
令2x+ =k ,k∈Z,
得:x= ,
函数f(x)的对称中心为( ,1),k∈Z;
(Ⅱ)∵tanB= ,
由余弦定理:cosB= 化简可得:tanB= ,
∴sinB= ,
∵△ABC是锐角三角形,
∴B= .
∴ ,
那么:f(A)=2cos(2A+ )+1,
则2A+ ∈( , ),
∴cos(2A+ )∈[﹣1, ).
故得f(A)的取值范围是[﹣1,2)
【解析】(Ⅰ)根据函数f(x)= ,利用向量的运算求出函数f(x)的关系式,图象上相邻的两个最低点之间的距离为π.可得周期T=π,求出ω,即可求函数f(x)的对称中心.(Ⅱ)根据tanB= 由余弦定理:cosB= 化简可得:tanB= ,求出B,利用三角函数的有界限求出f(A)的取值范围.
科目:高中数学 来源: 题型:
【题目】定义“正对数”:ln+x= ,现有四个命题: ①若a>0,b>0,则ln+(ab)=bln+a
②若a>0,b>0,则ln+(ab)=ln+a+ln+b
③若a>0,b>0,则 b
④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2
其中的真命题有: . (写出所有真命题的编号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】解答题
(Ⅰ)讨论函数f(x)= ex的单调性,并证明当x>0时,(x﹣2)ex+x+2>0;
(Ⅱ)证明:当a∈[0,1)时,函数g(x)= (x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S= .现有周长为4+ 的△ABC满足sinA:sinB:sinC=( ﹣1): : ( +1),试用以上给出的公式求得△ABC的面积为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,设圆的方程为(x+2 )2+y2=48,F1是圆心,F2(2 ,0)是圆内一点,E为圆周上任一点,线EF2的垂直平分线EF1的连线交于P点,设动点P的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设直线l(与x轴不重合)与曲线C交于A、B两点,与x轴交于点M.
(i)是否存在定点M,使得 + 为定值,若存在,求出点M坐标及定值;若不存在,请说明理由;
(ii)在满足(i)的条件下,连接并延长AO交曲线C于点Q,试求△ABQ面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:
古文迷 | 非古文迷 | 合计 | |
男生 | 26 | 24 | 50 |
女生 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(Ⅰ)根据表中数据能否判断有60%的把握认为“古文迷”与性别有关?
(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;
(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.
参考公式:K2= ,其中n=a+b+c+d.
参考数据:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.321 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】观察下表:
1,
2,3,
4,5,6,7,
8,9,10,11,12,13,14,15,
……
问:(1)此表第n行的第一个数与最后一个数分别是多少?
(2)此表第n行的各个数之和是多少?
(3)2012是第几行的第几个数?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com