精英家教网 > 高中数学 > 题目详情

选修4-1:几何证明选讲

如图,直线与圆切于点,过作直线与圆交于两点,点在圆上,且

(1)求证:

(2)若,求

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知a>0,且a≠1函数f(x)=loga(1-ax
(1)求函数f(x)的定义域,判断并证明f(x)的单调性
(2)当a=e(e为自然对数的底数)时,设h(x)=(1-ef(x))(x2-m+1),若函数h(x)的极值存在,求实数m的取值范围以及函数h(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.Rt△ABC中,∠C=90°,CD⊥AB,AD为圆O的直径,圆O与AC交于E,求证:$\frac{AE}{CE}$=$\frac{A{C}^{2}}{B{C}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\frac{1}{x+2}$-k|x|({k∈R})有三个不同的零点,则实数k的取值范围是(  )
A.(0,1)B.(0,2)C.(1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,O,P,Q三地有直道相通,OP=3千米,PQ=4千米,OQ=5千米,现甲、乙两警员同时从O地出发匀速前往Q地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是OQ,速度为5千米/小时,乙的路线是OPQ,速度为8千米/小时,乙到达Q地后在原地等待.设t=t1时乙到达P地,t=t2时乙到达Q地.
(1)求t1与f(t1)的值;
(2)已知警员的对讲机的有效通话距离是3千米,当t1≤t≤t2时,求f(t)的表达式,并判断f(t)在[t1,t2]上的最大值是否超过3?说明理由.

查看答案和解析>>

科目:高中数学 来源:2017届河南商丘第一高级中学年高三上理开学摸底数学试卷(解析版) 题型:解答题

中,角所对的边分别为,且

(1)若,求

(2)若,且的面积为,求的周长.

查看答案和解析>>

科目:高中数学 来源:2017届河南商丘第一高级中学年高三上理开学摸底数学试卷(解析版) 题型:选择题

将函数的图象向右平移个单位后得到函数的图象.若函数在区间上均单调递增,则实数的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北邢台市高一上学期月考一数学试卷(解析版) 题型:填空题

________.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四面体P-ABC中,PA⊥面ACB,BC⊥AC,M是PA的中点,E是BM的中点,AC=2,PA=4,F是线段PC上的点,且EF∥面ACB.
(Ⅰ)求证:BC⊥AF
(Ⅱ)求$\frac{CF}{CP}$;
(Ⅲ)若异面直线EF与CA所成角为45°,求EF与面PAB所成角θ的正弦值.

查看答案和解析>>

同步练习册答案