精英家教网 > 高中数学 > 题目详情
已知f(x)=4-
1
x
,若存在区间[a,b]⊆(
1
3
,+∞)
,使得{y|y=f(x),x⊆[a,b]}=[ma,mb],则实数m的取值范围是______.
因为函数y=
1
x
(
1
3
,+∞)
上为减函数,所以函数f(x)=4-
1
x
(
1
3
,+∞)
上为增函数,
因为区间[a,b]⊆(
1
3
,+∞)

由{y|y=f(x),x∈[a,b]}=[ma,mb],
f(a)=ma
f(b)=mb
,即
4-
1
a
=ma
4-
1
b
=mb

说明方程4-
1
x
=mx
有两个大于
1
3
实数根.
4-
1
x
=mx
得:m=-
1
x2
+
4
x

t=
1
x
,则t∈(0,3).
则m=-t2+4t=-(t-2)2+4.
由t∈(0,3),所以m∈(0,4].
所以使得{y|y=f(x),x∈[a,b]}=[ma,mb]的实数m的取值范围是(0,4].
故答案为(0,4].
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
2x-1  ,(x≥2)
-x2+3x ,(x<2)
,则f(-1)+f(4)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乐山二模)已知f(x)=-
4+
1
x2
,点Pn(an,-
1
an+1
)
在曲线y=f(x)上(n∈N*)且a1=1,an>0.
(Ⅰ)求证:数列{
1
a
2
n
}
为等差数列,并求数列{an}的通项公式;
(Ⅱ)设数列{
a
2
n
a
2
n+1
}
的前n项和为Sn,若对于任意的n∈N*,存在正整数t,使得Snt2-t-
1
2
恒成立,求最小正整数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(x+
π
4
)=
1+tanx
1-tanx
(x≠kπ+
π
4
)
,那么函数y=tanx的周期为π.类比可推出:已知x∈R且f(x+π)=
1+f(x)
1-f(x)
,那么函数y=f(x)的周期是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
4•2010x+2
2010x+1
+xcosx(-1≤x≤1)
,设函数f(x)的最大值是M,最小值是N,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=-
4+
1
x2
,数列{an}的前n项和为Sn,点Pn(an,-
1
an+1
)
在曲线y=f(x)上(n∈N*),且a1=1,an>0.
(1)求数列{an}的通项公式;
(2)数列{bn]的前n项和为Tn,且满足
Tn+1
an2
=
Tn
an+12
+16n2-8n-3
,b1=1,求证:数列{
Tn
4n-3
}
是等差数列,并求数列{bn]的通项公式.

查看答案和解析>>

同步练习册答案