精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
-x-1,x>0
0,x=0
x+1,x<0
,则f[f(2)]的值是
 
考点:函数的值
专题:函数的性质及应用
分析:由已知中函数f(x)=
-x-1,x>0
0,x=0
x+1,x<0
,先将x=2代入计算f(2)的值,进而可得f[f(2)]的值.
解答: 解:∵函数f(x)=
-x-1,x>0
0,x=0
x+1,x<0

∴f[f(2)]=f(-3)=-2,
故答案为:-2
点评:本题考查的知识点是函数值,直接代入求解即可得到答案,难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3
cos2x+sinxcosx-
3
2

(1)求函数f(x)的单调递增区间;
(2)若x∈[0,
π
4
],求函数f(x)的取值范围;
(3)函数f(x)的图象经过怎样的平移可使其对应的函数成为奇函数?

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=1,a+
a2
2
+
a3
3
+…+
an
a
=2n-1(n∈N*
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn
(3)求存在n∈N*,使得an≤n(n+1)λ成立,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-x (a>1)
(1)证明:
f′(x1)+f′(x2)
2
≥f′(
x1+x2
2
);
(2)求函数f(x)的最小值,并求最小值小于0时的a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式的值:
(1)(
4
9
 
1
2
-(
64
27
 
2
3
+2-2
(2)log49-log2
3
32
+2 log23

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线方程为y2=2px(p>0),经过焦点且倾斜角为135°的直线,被抛物线所截得的弦长为8.
(1)试求抛物线方程;
(2)若该抛物线的焦点为F,准线与x轴的交点为M,N为抛物线上的一点,且满足NF=
3
2
MN,求∠NMF的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
ax-1
+
1
2
(a>0,a≠1)是
 
函数(填“奇”、“偶”、“既奇又偶”、“奇非偶”)

查看答案和解析>>

科目:高中数学 来源: 题型:

若A={-1,0,3},B={-1,1,2,3},则A∩B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某市高三数学抽样考试中,对90分以上(含90分)的成绩进行统计,其频率分布图如图所示,若130~140分数段的人数为90人,则90~100分数段的人数为(  )
A、740B、180
C、720D、540

查看答案和解析>>

同步练习册答案