精英家教网 > 高中数学 > 题目详情
已知向量
a
=(mx,8)
b
=(2x+2,-x)
c
=(1,0)
,函数f(x)=
a
b
+1
g(x)=
a
c
.若对于任一实数x,f(x)与g(x)的值至少有一个为正数,则实数m的取值范围是(  )
分析:先求出f(x)与g(x)的解析式,当m≤0时,显然不成立;当m>0时,因为f(0)=1>0,所以仅对对称轴进行讨论即可.
解答:解:由题意可得 f(x)=
a
b
+1
=2mx2+2mx-8x+1=2mx2-2(4-m)x+1,g(x)=
a
c
=mx,
当m≤0时,显然不成立.
当m>0时,因f(0)=1>0,
当-
b
2a
=
4-m
2m
≥0,即0<m≤4时结论显然成立.
当-
b
2a
=
4-m
2m
<0时,只要△=4(4-m)2-8m=4(m-8)(m-2)<0即可,即4<m<8.
综上可得,0<m<8
故选B.
点评:本题主要考查对二次函数图象的理解,对于二次函数的图象,一定要注意其开口方向、对称轴和判别式,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设m∈R,在平面直角坐标系中,已知向量a=(mx,y+1),向量b=(x,y-1),a⊥b,动点M(x,y)的轨迹为E.
(Ⅰ)求轨迹E的方程,并说明该方程所表示曲线的形状;
(Ⅱ)已知m=
1
4
.证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且OA⊥OB(O为坐标原点),并求该圆的方程;
(Ⅲ)已知m=
1
4
.设直线l与圆C:x2+y2=R2(1<R<2)相切于A1,且l与轨迹E只有一个公共点B1.当R为何值时,|A1B1|取得最大值?并求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知向量
a
=(mx,2(y-2))
b
=(x,y+2)
(m∈R),且满足
a
b
,动点M(x,y)的轨迹为C.
(Ⅰ)求轨迹C的方程,并说明该方程所表示的轨迹的形状;
(Ⅱ)若已知圆O:x2+y2=1,当m=1时,过点M作圆O的切线,切点为A、B,求向量
OA
OB
的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a.
b
.
c
.
d
.及实数x,y满足|
a
|=|
b
|=1,
c
=
a
+(x-3)
b
d
=-y
a
+x
b,
a
b,
c
d
|
c
|≤
10

(1)求y关于x的函数关系 y=f(x)及其定义域.
(2)若x∈(1、6)时,不等式f(x)≥mx-16恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设m∈R,在平面直角坐标系中,已知向量
a
=(mx,y+1)
,向量
b
=(x,y-1)
a
b
,动点M(x,y)的轨迹为E.
(Ⅰ)求轨迹E的方程,并说明该方程所表示曲线的形状;
(Ⅱ)已知m=
1
4
,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且OA⊥OB(O为坐标原点),并求出该圆的方程.

查看答案和解析>>

同步练习册答案