科目:高中数学 来源: 题型:
如图所示,在正方体ABCD
A1B1C1D1中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1的中点,则直线NO、AM的位置关系是( )
![]()
(A)平行
(B)相交
(C)异面垂直
(D)异面不垂直
查看答案和解析>>
科目:高中数学 来源: 题型:
用反证法证明命题“三角形的三个内角至少有一个不大于60°”时,应假设( )
A.三个内角都不大于60°
B.三个内角都大于60°
C.三个内角至多有一个大于60°
D.三个内角至多有两个大于60°
查看答案和解析>>
科目:高中数学 来源: 题型:
设平面内有n条直线(n≥3),有且仅有两条直线互相平行,任意三条直线不过同一点,若用f(n)表示平面内交点的个数,则当n≥3时,f(n)=________.(用n表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
如图K411所示,正方形ACDE与等腰直角三角形
![]()
图K411
ACB所在的平面互相垂直,且AC=BC=2,∠ACB=90°,F,G分别是线段AE,BC的中点,则AD与GF所成的角的余弦值为( )
A.
B.-![]()
C.
D.-![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
A是△BCD所在平面外的一点,E,F分别是BC,AD的中点.
(1)求证:直线EF与BD是异面直线;
(2)若AC⊥BD,AC=BD,求EF与BD所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知四棱锥P ABCD的三视图如图K4014所示,其中主视图和左视图是直角三角形,俯视图是正方形,E是侧棱PC上的动点.
(1)求四棱锥P ABCD的体积.
(2)不论点E在何位置,是否都有BD⊥AE?证明你的结论.
![]()
图K4014
查看答案和解析>>
科目:高中数学 来源: 题型:
已知正方体ABCD A1B1C1D1中,点E为A1C1的中点,若
,则x,y的值分别为( )
A.x=1,y=1 B.x=1,y=![]()
C.x=
,y=
D.x=
,y=1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com