精英家教网 > 高中数学 > 题目详情

(本小题12分)已知函数的图象在轴上的截距为1,在相邻两最值点分别取得最大值和最小值.

⑴求的解析式;

⑵若函数满足方程求在内的所有实数根之和.

 

【答案】

(1)   (2)21.

【解析】(1)先根据,再根据最值得A=2,因为图像过点(0,1),求出,到此解析式确定.

(2)解本题的关键是把内的所有实数根的问题转化为y=f(x)与y=a在[0,9]范围内有几个交点的问题.由于的周期,∴函数上恰好是三个周期.函数在在内有6个交点.

解:(1)依题意,得:

              …………2分

 最大值为2,最小值为-2,                   

                                  …………4分

  图象经过,即            

  又          …………6分

(2)∵的周期,∴函数上恰好是三个周期.函数在在内有6个交点.…………8分由于函数的图象具有对称性,数形结合可知:方程有6个实数根.且前两个根关于直线对称,所以前两根之和1.………10分

再由周期性可知:中间两根之和为1+6=7,后两根之和为1+12=13………11分

所以方程内的所有实数根之和为1+7+13=21.……12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题12分)已知,直线与函数的k*s#5^u图象都相切,且与函数的k*s#5^u图象的k*s#5^u切点的k*s#5^u横坐标为.

(Ⅰ)求直线的k*s#5^u方程及的k*s#5^u值;

(Ⅱ)若(其中的k*s#5^u导函数),求函数的k*s#5^u最大值;

(Ⅲ)当时,求证:.

查看答案和解析>>

科目:高中数学 来源:2011年四川省泸县二中高2013届春期重点班第一学月考试数学试题 题型:解答题

(本小题12分)已知等比数列中,
(1)求数列的通项公式;
(2)设等差数列中,,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源:2011云南省潞西市高二上学期期末考试数学试卷 题型:解答题

(本小题12分)

已知顶点在原点,焦点在轴上的抛物线与直线交于P、Q两点,|PQ|=,求抛物线的方程

 

查看答案和解析>>

科目:高中数学 来源:2010年浙江省杭州市七校高二上学期期中考试数学文卷 题型:解答题

(本小题12分)

已知圆C:

(1)若直线且与圆C相切,求直线的方程.

(2)是否存在斜率为1直线,使直线被圆C截得弦AB,以AB为直径的圆经过原点O. 若存在,求

    出直线的方程;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2012届山东省兖州市高二下学期期末考试数学(文) 题型:解答题

(本小题12分)已知函数

(1)       求这个函数的导数;

(2)       求这个函数的图像在点处的切线方程。

 

查看答案和解析>>

同步练习册答案