精英家教网 > 高中数学 > 题目详情
1.阅读如图所示的程序框图,运行相应程序,输出的结果是(  )
A.242B.274C.275D.338

分析 根据程序框图进行模拟运算即可.

解答 解:第一次S=211+1=212,a=2,n>5不成立,循环,n=2,
第二次S=212+2=214,a=4,n>5不成立,循环,n=3,
第三次S=214+4=218,a=8,n>5不成立,循环,n=4,
第四次S=218+8=226,a=16,n>5不成立,循环,n=5,
第五次S=226+16=242,a=32,n>5不成立,循环,n=6,
第六次S=242+32=274,a=64,n>5成立,输出S=274,
故选:B

点评 本题主要考查程序框图的识别和应用,根据条件进行模拟计算是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=Asin(ωx+φ)(ω>0,-π<φ<0)的部分图象如图所示,则下列判断正确的是(  )
A.函数f(x)的最小正周期为π
B.函数f(x)的值域为[-$\frac{7}{2}$,$\frac{7}{2}$]
C.函数f(x)的图象关于直线x=-$\frac{1}{6}$对称
D.函数f(x)的图象向右平移$\frac{1}{3}$个单位得到函数y=Asinωx的图象

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.复数$\frac{2}{1+i}$=(  )
A.2-iB.2-2iC.1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线l:x+4y=2与圆C:x2+y2=1交于A、B两点,O为坐标原点,若直线OA、OB的倾斜角分别为α、β,则cosα+cosβ=(  )
A.$\frac{18}{17}$B.$-\frac{12}{17}$C.$-\frac{4}{17}$D.$\frac{4}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,已知点A(-1,0)、B(1,0)、C(0,-1),N为y轴上的点,MN垂直于y轴,且点M满足$\overrightarrow{AM}•\overrightarrow{BM}=\overrightarrow{ON}•\overrightarrow{CM}$(O为坐标原点),点M的轨迹为曲线T.
(Ⅰ)求曲线T的方程;
(Ⅱ)设点P(P不在y轴上)是曲线T上任意一点,曲线T在点P处的切线l与直线$y=-\frac{5}{4}$交于点Q,试探究以PQ为直径的圆是否过一定点?若过定点,求出该定点的坐标,若不过定点,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称.从外表上看,六根等长的正四棱柱体分成三组,经90°榫卯起来,如图3,若正四棱柱体的高为6,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为41π.(容器壁的厚度忽略不计)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ln x.
(1)判断函数$g(x)=af(x)-\frac{1}{x}$的单调性;
(2)若对任意的x>0,不等式f(x)≤ax≤ex恒成立,求实数a的取值范围;
(3)若x1>x2>0,求证:$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>\frac{{2{x_2}}}{{{x_1}^2+{x_2}^2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.A、B两个班共有65名学生,为调查他们的引体向上锻炼情况,通过分层抽样获得了部分学生引体向上的测试数据(单位:个),用茎叶图记录如下:
(I) 试估计B班的学生人数;
(II) 从A班和B班抽出的学生中,各随机选取一人,A班选出的人记为甲,B班选出的人记为乙,假设所有学生的测试相对独立,比较甲、乙两人的测试数据得到随机变量ξ.规定:
当甲的测试数据比乙的测试数据低时,记ξ=-1,
当甲的测试数据与乙的测试数据相等时,记ξ=0,
当甲的测试数据比乙的测试数据高时,记ξ=1.
求随机变量ξ的分布列及期望.
(III) 再从A、B两个班中各随机抽取一名学生,他们引体向上的测试数据分别是10,8(单位:个),这2个新数据与表格中的数据构成的新样本的平均数记μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知集合A={-2,0},B={-2,3},则A∪B={-2,0,3}.

查看答案和解析>>

同步练习册答案